Advertisement

Effect of Addition of Other Acids into Butyric Acid on Selective Leaching of Zinc from Basic Oxygen Steelmaking Filter Cake

  • Jingxiu WangEmail author
  • Zhe WangEmail author
  • Zhongzhi Zhang
  • Guangqing Zhang
Article
  • 41 Downloads

Abstract

The selective leaching of zinc over iron from basic oxygen steelmaking (BOS) filter cake was investigated using mixtures of butyric acid with acetic and/or propionic acid, HCl, or H2SO4. The main focus was to assess the effects of other acids on the zinc and iron leaching in butyric acid. The results show that slight reduction of zinc leaching and increase in iron leaching may take place with addition of acetic and propionic acids, causing a minor decrease in the selectivity of zinc leaching over iron. Intermittent addition of H2SO4 and HCl was required to control the pH to be not less than that of pure butyric acid solution. Overall, an excellent selectivity can be maintained with the butyric acid–other acid mixtures. The results demonstrate the feasibility to use raw butyric acid without purification or waste butyric acid containing other impurity acids for leaching of zinc from the BOS filter cake to be recycled. Using high content of H2SO4 in leaching is not recommended because it has a more detrimental effect on the selectivity of zinc leaching and may cause deposition of CaSO4 in the leaching residue which may increase the SO2 or CO2 emission in later high-temperature recycling processes.

Notes

Acknowledgments

The first author wishes to gratefully acknowledge the scholarship support from the University of Wollongong (IPTA and UPA scholarships) and the China Scholarship Council (CSC). The BOS filter cake sample used in this work was supplied by BlueScope. The authors are also indebted to Dr. Linda Tie from UOW for help in ICP-OES operation.

References

  1. 1.
    Z.H. Trung, F. Kukurugya, Z. Takacova, D. Orac, M. Laubertova, A. Miskufova, and T. Havlik: J. Hazard. Mater., 2011, vol. 192, pp. 1100-07.CrossRefGoogle Scholar
  2. 2.
    B. Das, S. Prakash, P. Reddy, and V. Misra: Resour. Conserv. Recycl., 2007, vol. 50, pp. 40-57.CrossRefGoogle Scholar
  3. 3.
    K. Gargul, and B. Boryczko: Arch. Civ. Mech. Eng., 2015, vol. 15, pp. 179-87.CrossRefGoogle Scholar
  4. 4.
    S. Kelebek, S. Yörük, and B. Davis: Miner. Eng., 2004, vol. 17, pp. 285-91.CrossRefGoogle Scholar
  5. 5.
    J. Vereš, M. Lovás, Š. Jakabský, V. Šepelák, and S. Hredzák: Hydrometallurgy, 2012, vol. 129, pp. 67-73.Google Scholar
  6. 6.
    S. Hay, and W. Rankin: Miner. Eng., 1994, vol. 7, pp. 985-1001.CrossRefGoogle Scholar
  7. 7.
    J.G. Machado, F.A. Brehm, C.A.M. Moraes, C.A. Dos Santos, A.C.F. Vilela, and J.B.M. Da Cunha: J. Hazard. Mater., 2006, vol. 136, pp. 953-60.CrossRefGoogle Scholar
  8. 8.
    T. Mansfeldt, and R. Dohrmann: Environ. Sci. Technol., 2004, vol. 38, pp. 5977-84.CrossRefGoogle Scholar
  9. 9.
    J. Vereš, Š. Jakabský, M. Lovás, and S. Hredzák: Acta Montan. Slovaca, 2010, vol. 15, pp. 204-11.Google Scholar
  10. 10.
    M.V. Cantarino, C. de Carvalho Filho, and M.B. Mansur: Hydrometallurgy, 2012, vol. 111, pp. 124–28.Google Scholar
  11. 11.
    Z. Wang, D. Pinson, S. Chew, B.J. Monaghan, H. Rogers, and G. Zhang: ISIJ International, 2016, vol. 56, pp. 505-12.CrossRefGoogle Scholar
  12. 12.
    R.A. Shawabkeh: Hydrometallurgy, 2010, vol. 104, pp. 61-65.CrossRefGoogle Scholar
  13. 13.
    T. Havlík, B.V. e Souza, A.M. Bernardes, I.A.H. Schneider, and A. Miškufová: J. Hazard. Mater., 2006, vol. 135, pp. 311–18.Google Scholar
  14. 14.
    V. Montenegro, P. Oustadakis, P.E. Tsakiridis, and S. Agatzini-Leonardou: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1058-69.CrossRefGoogle Scholar
  15. 15.
    Š. Langová, J. Leško, and D. Matýsek: Hydrometallurgy, 2009, vol. 95, pp. 179-82.CrossRefGoogle Scholar
  16. 16.
    H. Shalchian, A. Rafsanjani-Abbasi, J. Vahdati-Khaki, and A. Babakhani: Metall. Mater. Trans. B, 2014, vol. 46, pp. 38-47.Google Scholar
  17. 17.
    P. Oustadakis, P. Tsakiridis, A. Katsiapi, and S. Agatzini-Leonardou: J. Hazard. Mater., 2010, vol. 179, pp. 1-7.CrossRefGoogle Scholar
  18. 18.
    J.M. Steer, and A.J. Griffiths: Hydrometallurgy, 2013, vol. 140, pp. 34-41.CrossRefGoogle Scholar
  19. 19.
    J. Wang, Z. Wang, Z. Zhang, and G. Zhang: Metall. Mater. Trans. B, 2019, vol. 50, pp. 480–90 .CrossRefGoogle Scholar
  20. 20.
    Y. Zhu, Z. Wu, and S.-T. Yang: Process Biochem., 2002, vol. 38, pp. 657-66.CrossRefGoogle Scholar
  21. 21.
    M. Dwidar, J.Y. Park, R.J. Mitchell, and B.I. Sang: Sci. World J., 2012, vol. 2012, p. 471417.CrossRefGoogle Scholar
  22. 22.
    M. Sjöblom, L. Matsakas, P. Christakopoulos, and U. Rova: Ind. Crops Prod., 2015, vol. 74, pp. 535-44.CrossRefGoogle Scholar
  23. 23.
    X. Liu, and S.T. Yang: Process Biochem., 2005, vol. 41, pp. 801-08.CrossRefGoogle Scholar
  24. 24.
    M. Liong, and N. Shah: J. Appl. Microbiol., 2005, vol. 99, pp. 783-93.CrossRefGoogle Scholar
  25. 25.
    N. Ren, D. Zhao, X. Chen, and J. Li: Science in China Series B: Chemistry, 2002, vol. 45, pp. 319-27.CrossRefGoogle Scholar
  26. 26.
    Š. Langová, and D. Matýsek: Hydrometallurgy, 2010, vol. 101, pp. 171-73.CrossRefGoogle Scholar
  27. 27.
    D. Baik, and D. Fray: Min. Process. Extr. Metall., 2000, vol. 109, pp. 121-28.CrossRefGoogle Scholar
  28. 28.
    J. Wang, Z. Wang, Z. Zhang, and G. Zhang: J. Clean. Prod., 2019, vol. 209, pp. 1-9.CrossRefGoogle Scholar
  29. 29.
    A. Agrawal, and K. Sahu: J. Hazard. Mater., 2009, vol. 171, pp. 61-75.CrossRefGoogle Scholar
  30. 30.
    W. Kladnig: J. Iron Steel Res. Int., 2008, vol. 15, pp. 1-6.CrossRefGoogle Scholar
  31. 31.
    D. Megias-Alguacil, E. Tervoort, C. Cattin, and L.J. Gauckler: J. Colloid Interface Sci., 2011, vol. 353, pp. 512-18.CrossRefGoogle Scholar
  32. 32.
    T. Allen, and R. Patel: J. Colloid Interface Sci., 1971, vol. 35, pp. 647-55.CrossRefGoogle Scholar
  33. 33.
    A. Oxley, N. Sirvanci, and S. Purkiss: Metalurgija, 2007, vol. 13, pp. 5-10.Google Scholar
  34. 34.
    J.F. Adams, and V.G. Papangelakis: Can. Metall. Q., 2000, vol. 39, pp. 421-32.CrossRefGoogle Scholar
  35. 35.
    N.R. Nengovhela, C.A. Strydom, J.P. Maree, S. Oosthuizen, and D.J. Theron: Water S.A, 2007, vol. 33, pp. 741–47.Google Scholar
  36. 36.
    Z. Yan, Z. Wang, X. Wang, H. Liu, and J. Qiu: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 3490−97.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia
  2. 2.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  3. 3.State Key Laboratory of Heavy Oil Processing, Faculty of Chemical EngineeringChina University of PetroleumBeijingChina

Personalised recommendations