Advertisement

Dendritic Growth Under Natural and Forced Convection in Al-Cu Alloys: From Equiaxed to Columnar Dendrites and from 2D to 3D Phase-Field Simulations

  • Ang Zhang
  • Shaoxing Meng
  • Zhipeng GuoEmail author
  • Jinglian Du
  • Qigui Wang
  • Shoumei XiongEmail author
Article
  • 54 Downloads

Abstract

The interaction between convection and solute transport during solidification has significant influence on the dendritic evolution. By employing the phase-field lattice-Boltzmann approach together with the parallel and adaptive-mesh-refinement algorithm, the dendritic evolution under convection is simulated in both 2D and 3D cases. The flow-induced redistribution of the solute alters both tip velocity and the development of dendritic arms. The effect of both convection and undercooling is quantified and compared using the length ratio of the dendritic arms. The effect of convection behavior (i.e., natural and forced) and domain dimension (i.e., 2D and 3D) on dendritic growth is discussed. Results show that the convection effect is mainly dominated by the convection mode, and the melt flow in 2D can produce biased results comparing with those in 3D.

Notes

Acknowledgments

This work was financially supported by the Joint Funds of the National Natural Science Foundation of China (Grant Number U1537202), the Tsinghua-General Motors International Collaboration Project (Grant Number 20153000354), the Tsinghua University Initiative Scientific Research Program (Grant Number 20151080370), and the Tsinghua Qingfeng Scholarship (THQF-2015). The authors would also like to thank the National Laboratory for Information Science and Technology in Tsinghua University for access to supercomputing facilities.

References

  1. 1.
    J.A. Dantzig and M. Rappaz. Solidification, EPFL Press, Lausanne, 2009.CrossRefGoogle Scholar
  2. 2.
    N. Shevchenko, S. Boden, S. Eckert, and G. Gerbeth. Observation of segregation freckle formation under the influence of melt convection., in IOP Conference Series-Materials Science and Engineering, 2012.Google Scholar
  3. 3.
    S. Wang, Z.P. Guo, X.P. Zhang, A. Zhang and J.W. Kang, Ultrason Sonochem, 2019, vol. 51, pp. 160-65.CrossRefGoogle Scholar
  4. 4.
    M. Zhang and T. Maxworthy, J Fluid Mech, 2002, vol. 470, pp. 247-68.CrossRefGoogle Scholar
  5. 5.
    L. Yuan and P.D. Lee: Model. Simul. Mater. Sci. Eng., 2010, vol. 18, art. id 055008.CrossRefGoogle Scholar
  6. 6.
    W.J. Boettinger, J.A. Warren, C. Beckermann and A. Karma, Annu Rev Mater Res, 2002, vol. 32, pp. 163–94.CrossRefGoogle Scholar
  7. 7.
    I. Steinbach: Simul. Mater. Sci. Eng., 2009, vol. 17, art. id 073001.CrossRefGoogle Scholar
  8. 8.
    X. Fan, A. Zhang, Z. Guo, X. Wang, J. Yang and J. Zou, J Mater Sci, 2019, vol. 54, pp. 2680-89.CrossRefGoogle Scholar
  9. 9.
    A. Zhang, J. Du, Z. Guo, Q. Wang and S. Xiong, Scripta Mater, 2019, vol. 165, pp. 64-67.CrossRefGoogle Scholar
  10. 10.
    D. Sun, M. Zhu, S. Pan and D. Raabe, Acta Mater, 2009, vol. 57, pp. 1755-67.CrossRefGoogle Scholar
  11. 11.
    M.F. Zhu and C.P. Hong, Isij Int, 2001, vol. 41, pp. 436-45.CrossRefGoogle Scholar
  12. 12.
    J. Du, Z. Guo, A. Zhang, M. Yang, M. Li, and S. Xiong: Sci. Rep., 2017, vol. 7, art. id 13600.CrossRefGoogle Scholar
  13. 13.
    J. Du, D. Xiao, B. Wen, R. Melnik and Y. Kawazoe, J. Phys. Chem. Lett., 2016, vol. 7, pp. 567-71.CrossRefGoogle Scholar
  14. 14.
    J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, F. Liu and S. Xiong, J Alloy Compd, 2019, vol. 775, pp. 322-29.CrossRefGoogle Scholar
  15. 15.
    J. Du, A. Zhang, Z. Guo, M. Yang, M. Li and S. Xiong, Intermetallics, 2018, vol. 95, pp. 119-29.CrossRefGoogle Scholar
  16. 16.
    A Zhang, Z. Guo and S.M. Xiong, Phys. Rev. E, 2018, vol. 97, pp. 053302.CrossRefGoogle Scholar
  17. 17.
    A. Zhang, Z. Guo and S.M. Xiong, J. Appl. Phys., 2017, vol. 121, pp. 125101.CrossRefGoogle Scholar
  18. 18.
    J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, F. Liu and S. Xiong, Acta Mater, 2018, vol. 161, pp. 35-46.CrossRefGoogle Scholar
  19. 19.
    J. Du, A. Zhang, Z. Guo, M. Yang, M. Li and S. Xiong, ACS Omega, 2017, vol. 2, pp. 8803-09.CrossRefGoogle Scholar
  20. 20.
    C. Chen, E. Bouchbinder and A. Karma, Nat. Phys., 2017, vol. 13, pp. 1186–90.CrossRefGoogle Scholar
  21. 21.
    Y. Lu, C. Beckermann and J.C. Ramirez, J Cryst Growth, 2005, vol. 280, pp. 320-34.CrossRefGoogle Scholar
  22. 22.
    X. Tong, C. Beckermann, A. Karma and Q. Li, Phys. Rev. E, 2001, vol. 63, pp. 061601.CrossRefGoogle Scholar
  23. 23.
    J. Jun-Ho, N. Goldenfeld and J.A. Dantzig, Phys. Rev. E, 2001, vol. 64, pp. 041602.CrossRefGoogle Scholar
  24. 24.
    C.W. Lan and C.J. Shih, J Cryst Growth, 2004, vol. 264, pp. 472-82.CrossRefGoogle Scholar
  25. 25.
    C.W. Lan, C.M. Hsu, C.C. Liu and Y.C. Chang, Phys. Rev. E, 2002, vol. 65, pp. 061601.CrossRefGoogle Scholar
  26. 26.
    Z. Guo, J. Mi, S. Xiong and P.S. Grant, J Comput Phys, 2014, vol. 257, pp. 278-97.CrossRefGoogle Scholar
  27. 27.
    X. Zhang, J. Kang, Z. Guo, S. Xiong and Q. Han, Comput Phys Commun, 2018, vol. 223, pp. 18-27.CrossRefGoogle Scholar
  28. 28.
    Zhang, J. Du, Z. Guo, Q. Wang and S. Xiong, Metallurgical and Materials Transactions B, 2018, vol. 49, pp. 3603-15.CrossRefGoogle Scholar
  29. 29.
    T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva and E.M. Viggen. The Lattice Boltzmann Method Principles and Practice, Springer, Cham, Switzerland, 2017.CrossRefGoogle Scholar
  30. 30.
    W. Miller, S. Succi and D. Mansutti, Phys Rev Lett, 2001, vol. 86, pp. 3578-81.CrossRefGoogle Scholar
  31. 31.
    D. Medvedev, T. Fischaleck and K. Kassner, Phys. Rev. E, 2006, vol. 74, pp. 031606.CrossRefGoogle Scholar
  32. 32.
    T. Takaki, R. Rojas, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe and T. Aoki, J Cryst Growth, 2017, vol. 474, pp. 146-53.CrossRefGoogle Scholar
  33. 33.
    S. Sakane, T. Takaki, M. Ohno, Y. Shibuta, T. Shimokawabe and T. Aoki, J Cryst Growth, 2018, vol. 483, pp. 147-55.CrossRefGoogle Scholar
  34. 34.
    M. Eshraghi, M. Hashemi, B. Jelinek and S.D. Felicelli, Metals-Basel, 2017, vol. 7, pp. 474-95.Google Scholar
  35. 35.
    Z. Guo and S.M. Xiong, Comput Phys Commun, 2015, vol. 190, pp. 89-97.CrossRefGoogle Scholar
  36. 36.
    J. Du, A. Zhang, Z. Guo, M. Yang, M. Li and S. Xiong, Phys. Rev. Mater. 2018, vol. 2, pp. 083402.CrossRefGoogle Scholar
  37. 37.
    J.C. Ramirez, C. Beckermann, A. Karma and H.J. Diepers, Phys. Rev. E, 2004, vol. 69, pp. 051607.CrossRefGoogle Scholar
  38. 38.
    Karma, Phys Rev Lett, 2001, vol. 87, pp. 115701.CrossRefGoogle Scholar
  39. 39.
    Zhang, Z. Guo and S. Xiong, China Foundry, 2017, vol. 14, pp. 373-78.CrossRefGoogle Scholar
  40. 40.
    Z. Guo, C. Zheng and B. Shi, Phys. Rev. E, 2002, vol. 65, pp. 046308.CrossRefGoogle Scholar
  41. 41.
    C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma and X. Tong, J. Comput. Phys., 1999, vol. 154, pp. 468-96.CrossRefGoogle Scholar
  42. 42.
    A. Zhang, J. Du, Z. Guo and S. Xiong, Phys. Rev. E, 2018, vol. 98, pp. 043301.CrossRefGoogle Scholar
  43. 43.
    Zhang, J. Du, Z. Guo, Q. Wang and S. Xiong, Metall. Mater. Trans. B, 2019, vol. 50, pp. 517-30.CrossRefGoogle Scholar
  44. 44.
    R.S. Maier, R.S. Bernard and D.W. Grunau, Phys Fluids, 1996, vol. 8, pp. 1788-801.CrossRefGoogle Scholar
  45. 45.
    R. Tönhardt and G. Amberg, Phys Rev E, 2000, vol. 62, pp. 828-36.CrossRefGoogle Scholar
  46. 46.
    C.J. Vreeman and F.P. Incropera, Int. J. Heat Mass Trans., 2000, vol. 43, pp. 687-704.CrossRefGoogle Scholar
  47. 47.
    N. Shevchenko, O. Roshchupkina, O. Sokolova and S. Eckert, J. Cryst. Growth, 2015, vol. 417, pp. 1-8.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Materials TechnologyGM Global Propulsion SystemsPontiacUSA
  3. 3.Key Laboratory for Advanced Materials Processing TechnologyMinistry of Education, Tsinghua UniversityBeijingChina

Personalised recommendations