Molecular Dynamics Simulation of the Structure and Properties of CaO-SiO2-CaF2 Slag Systems

  • Shengping HeEmail author
  • Sai Wang
  • Boran Jia
  • Min Li
  • Qiangqiang Wang
  • Qian Wang


As a fundamental slag system in metallurgical processes, the CaO-SiO2-CaF2 system, its properties, and related microstructures are of critical importance. The effect of the binary basicity and addition of CaF2 on the structure and viscosity of CaO-SiO2-CaF2 slag were investigated using molecular dynamics simulations and Fourier transform infrared spectrometry. The average bond lengths of Si-O, Ca-O, and O-O were 1.61, 2.31, and 2.61 Å, respectively, and the coordinate number of Si remained constant. O-Si-O maintained an angle of 109.2, which was considered to be unaffected by the basicity changes. With increasing basicity, the network connectivity degrees Q3 and Q4 decreased, and the microstructure of the melt was significantly simpler. The effect of CaF2 on the depolymerization of the network structure was not obvious, and CaF2 acted mainly as a diluent. The calculations showed that the viscosity decreased upon setting up a ratio of nonbridging oxygen over tetrahedrally coordinated atoms (NBO/T). A good linear relationship was confirmed between the viscosity of the molten slag and the NBO/T.



The authors would like to deeply appreciate the fund support from the National Natural Science Foundation of China (Project No. 51874057) and the Key projects of the National Natural Science Foundation of China (Project No. U1660204).


  1. 1.
    J. H. Park: ISIJ Int., 2002, vol. 42, pp. 38-43.CrossRefGoogle Scholar
  2. 2.
    Y. Sasaki, M. Iguchi and M. Hino: Trans. Iron Steel Inst. Jpn., 2007, vol. 47, pp. 638-42.CrossRefGoogle Scholar
  3. 3.
    G. H. Zhang and K. C. Chou: ISIJ Int., 2013, vol. 53, pp. 177-80.CrossRefGoogle Scholar
  4. 4.
    K.C. Mills: National Physical Laboratory, Teddington, UK, 1991.Google Scholar
  5. 5.
    M. Hayashi, T. Watanabe, K. Nagata and S. Hayashi: ISIJ Int., 2004, vol. 44, pp. 1527-33.CrossRefGoogle Scholar
  6. 6.
    Y. Tsunawaki, N. Iwamoto, T. Hattori, and A. Mitsuishi: J. Non-Cryst. Solids, 1981, vol. 44, pp. 369-78.CrossRefGoogle Scholar
  7. 7.
    R. W. Luth: Am. Mineral, 1988, vol. 73, pp. 297-305.Google Scholar
  8. 8.
    J. H. Park, J. M. Dong, and H. S. Song: Trans. Iron Steel Inst. Jpn., 2002, vol. 42, pp. 344-51.CrossRefGoogle Scholar
  9. 9.
    P. Saravanapavan and L. L. Hench: J. Biomed. Mater. Res. A, 2015. Vol. 54, pp. 608-18.CrossRefGoogle Scholar
  10. 10.
    J. Y. Park, S. J. Park, and W. S. Chang: J. Am. Ceram. Soc., 2012. Vol. 95, pp. 1756-63.CrossRefGoogle Scholar
  11. 11.
    R.N. Mead and M. Gavin: J. Phys. Chem. B, 2006. Vol. 110, pp. 14273-78.CrossRefGoogle Scholar
  12. 12.
    H. Hirao and K. Kawamura: Shokabo, Tokyo, 1994, pp. 52–54.Google Scholar
  13. 13.
    K. C. Mills and B. J. Keene: Metall. Rev., 1981, vol. 26, pp. 21-69.CrossRefGoogle Scholar
  14. 14.
    X. H. Huang: Metallurgy principle of iron and steel. Fourth Edition. (Beijing: Metallurgical industry press, 2013), pp. 316–17.Google Scholar
  15. 15.
    C. C. Miller: Proc. R. Soc. Lond. A, 1924, vol. 106, pp. 724–49.CrossRefGoogle Scholar
  16. 16.
    B. T. Poe, P. F. McMillan, D. C. Rubie, S Chakraborty, J Yarger, and J Diefenbacher: Science, 1997, vol. 276, pp. 1245-48.CrossRefGoogle Scholar
  17. 17.
    J. E. Reid, B. T. Poe, D. C. Rubie, N. Zotov, and M. Wiedenbeck: Chem. Geol., 2002, vol. 187, pp. 77–86.CrossRefGoogle Scholar
  18. 18.
    Z. Zhang, G. Wen, P. Tang, and S. Sridha: ISIJ Int., 2008, vol. 48, pp. 739-46.CrossRefGoogle Scholar
  19. 19.
    L. Zhou, W. Wang, F. J. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2012, vol. 43, pp. 354-62.CrossRefGoogle Scholar
  20. 20.
    L.L. Zhu, Q. Wang, S.D. Zhang, S.P. He, and Z.Z. Cai: Ironmak. Steelmak., 2017,
  21. 21.
    G. Z. Fan, S. P. He, T. Wu, and Q. Wang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2005-13.CrossRefGoogle Scholar
  22. 22.
    M. Gomez, G. C. Isaac, D. M. Haezebrouck, and A. J. Deardo: ISIJ Int., 2009, vol. 49, pp. 302-11.CrossRefGoogle Scholar
  23. 23.
    G. Lusvardi, G. Malavasi, M. Cortada, L. Menabue, M. C. Menziani, A. Pedone, and U. Segre: J. Phy. Chem., 2008, vol. 112, pp. 12730-739.CrossRefGoogle Scholar
  24. 24.
    D. I. G. Leekes, D. I. N. Nowack, and D. R. N. F. Schlegelmilch: Steel. Res. Int., 1988, vol. 59, pp. 406-16.CrossRefGoogle Scholar
  25. 25.
    O. Takeda, T. Okawara, and Y. Sato: ISIJ Int., 2012, vol. 52, pp. 1544-49.CrossRefGoogle Scholar
  26. 26.
    D. Nevins, F. J. Spera, and M. S. Ghiorso: Am. Mineral, 2009, vol. 94, pp. 975-80.CrossRefGoogle Scholar
  27. 27.
    S. F. Zhang, X. Zhang, W. Liu, X. W. Lv, C. G. Bai, and L. Wang: J. Non-Cryst. Solids, 2014, vol. 402, pp. 214-22.CrossRefGoogle Scholar
  28. 28.
    K.C. Mills, and C.Å. Däcker: The Casting Powders Book, Springer, Berlin, 2017, pp. 204–205.Google Scholar
  29. 29.
    S. Fanara, P. Sengupta, H. W. Becker, D. Rogalla, and S. Chakraborty: J. Non-Cryst. Solids, 2016, vol. 455, pp. 6-16.CrossRefGoogle Scholar
  30. 30.
    D. B. Dingwell: Chem. Geol., 1990, vol. 82, pp. 209-16.CrossRefGoogle Scholar
  31. 31.
    J. L. Li, Q. F. Shu, and K. C. Chou: Trans. Iron Steel Inst. Jpn., 2014, vol. 54, pp. 721-27.CrossRefGoogle Scholar
  32. 32.
    S. L. Lin and C. S. Hwang: J. Non-Cryst. Solids, 1996, vol. 202, pp. 61-7.CrossRefGoogle Scholar
  33. 33.
    J. Xie, H. R. Tang, J. Wang, M. M. Wu, J. J. Han, and C. Liu: J. Non-Cryst. Solids, 2017, vol. 481, pp. 403-08.CrossRefGoogle Scholar
  34. 34.
    T. Wu, Q. Wang, C. F. Yu, and S. P. He: J. Non-Cryst. Solids, 2016, vol. 450, pp. 23-31.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Shengping He
    • 1
    Email author
  • Sai Wang
    • 1
  • Boran Jia
    • 1
  • Min Li
    • 1
  • Qiangqiang Wang
    • 2
  • Qian Wang
    • 1
  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.College of Materials Science and Engineering, and Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and Advanced MaterialsChongqing UniversityChongqingChina

Personalised recommendations