Advertisement

Cobalt Recovery by the Chlorination-Volatilization Method

  • Pei-Wei Han
  • Li Xiao
  • Yong-Liang Wang
  • Yong-Gang Lu
  • Shu-Feng YeEmail author
Communication
  • 26 Downloads

Abstract

This communication presented the chlorination-volatilization of cobalt using calcium chloride. Effects of variables on the cobalt volatilization rate were investigated, including the flow rate, oxygen partial pressure, and water vapor content of the carrier gas, the roasting time, and the temperature. It was found that the chlorination of cobalt oxide was mainly in the form of indirect chlorination and cobalt volatilized in the form of gaseous CoCl2.

Notes

The authors gratefully acknowledge the research funding from the National Natural Science Foundation of China (Grant No. 51804292) and the Key Deployment Project of The Chinese Academy of Sciences (Grant No. ZDRW-ZS-2018-1-2).

References

  1. 1.
    Metallurgy Laboratory of Central South College of Mining and Metallurgy (1978) Chlorination Metallurgy. Metallurgical Industry Press, Beijing.Google Scholar
  2. 2.
    F.R. Huang, Y.L. Liao, J. Zhou, and B.J. Li: Chem. Ind. Eng. Progr., 2015, vol. 34, pp. 1133–38.Google Scholar
  3. 3.
    S. Wang: JOM, 2006, vol. 58, pp. 47–50.CrossRefGoogle Scholar
  4. 4.
    C. Erust and A. Akcil: Waste Manag. Res., 2016, vol. 34, pp. 527–33.CrossRefGoogle Scholar
  5. 5.
    C. Arslan and F. Arlsan: Hydrometallurgy, 2002, vol. 67, pp. 1–7.CrossRefGoogle Scholar
  6. 6.
    X.J. Zhai, N.J. Li, X. Zhang, Y. Fu, and L. Jiang: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 2117–21.CrossRefGoogle Scholar
  7. 7.
    W. Banda, N. Morgan, and J.J. Eksteen: Miner. Eng., 2002, vol. 15, pp. 899–907.CrossRefGoogle Scholar
  8. 8.
    M.Z. Zhang, G.C. Zhu, Y.N. Zhao, and X.J. Feng: Hydrometallurgy, 2012, vols. 129–130, pp. 140–44.CrossRefGoogle Scholar
  9. 9.
    F.H. Cui, W.N. Mu, S. Wang, H.X. Xin, H.T. Shen, Q. Xu, Y.C. Zhai, and S.H. Luo: Sep. Purif. Technol., 2018, vol. 195, pp. 149–62.CrossRefGoogle Scholar
  10. 10.
    I. Gaballah and M. Djona: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 481–90.CrossRefGoogle Scholar
  11. 11.
    I. Gaballah and M. Djona: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 41–50.CrossRefGoogle Scholar
  12. 12.
    KK Lippert, HB Pietsch, A Roeder, HW Walden (1969) Trans. Inst. Min. Metall. Sect. C 78:98–107.Google Scholar
  13. 13.
    N.X. Guo: Chemical Engineering Principle and Equipment of Nonferrous Metallurgy, Metallurgical Industry Press, Beijing, 2008.Google Scholar
  14. 14.
    T. Guo, X.J. Hu, H. Matsuura, F. Tsukihashi, and K.C. Chou: ISIJ Int., 2010, vol. 50, pp. 1084–88.CrossRefGoogle Scholar
  15. 15.
    B. Nowak, S.F. Rocha, P. Aschenbrenner, H. Rechberger and F. Winter: Chem. Eng. J., 2012, vol. 179, pp. 178–85.CrossRefGoogle Scholar
  16. 16.
    I. Barin: Thermochemical Data of Pure Substance, 3rd ed, Wiley-VCH Verlag Gmbh, Weinheim, 1995.CrossRefGoogle Scholar
  17. 17.
    J. Ding: Research on the Extraction of Gold from Gold-Bearing Pyrite Cinder by High Temperature Chlorination Method, University of Chinese Academy of Sciences, Beijing, 2017.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Pei-Wei Han
    • 1
  • Li Xiao
    • 1
  • Yong-Liang Wang
    • 1
  • Yong-Gang Lu
    • 1
  • Shu-Feng Ye
    • 1
    Email author
  1. 1.State Key Laboratory of Multiphase Complex Systems, Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations