Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 2, pp 1023–1034 | Cite as

Effects of Slag Composition on H2 Generation and Magnetic Precipitation from Molten Steelmaking Slag–Steam Reaction

  • Juncheng Li
  • Debashish Bhattacharjee
  • Xiaojun Hu
  • Dianwei Zhang
  • Seetharaman Sridhar
  • Zushu LiEmail author
Article

Abstract

In this paper, the effects of slag composition (slag basicity CaO/SiO2 and FeO concentration) on the amounts of H2 gas generated and the magnetic spinel phase precipitated as a result of the reaction between synthetic steelmaking slag and steam at 1873 K (1600 °C) were studied by thermodynamic simulation (using Thermodynamic Package FactSage 7.0) and laboratory experiments. The thermodynamic calculation showed that, upon increasing slag basicity (CaO/SiO2) from 1.0 to 2.5, for the reaction of 100 g of slags with 100 g of H2O gas, the accumulated amount of the produced H2 gas increased from 0.17 to 0.27 g, while the amount of magnetic spinel phase first increased and then decreased, with the maximum precipitation of 16.71 g at the basicity of 1.5. When the FeO concentration increased from 15 to 30 pct for the slag with basicity of 2.0, the accumulated amount of the produced H2 gas increased from 0.17 to 0.28 g, and the amount of magnetic spinel phase increased from 5.88 to 10.59 g. The laboratory experiments were conducted in confocal laser scanning microscope to verify the reaction between 0.2 g of slag and 3.75 L of H2O-Ar gas \( \left( {P_{{{\text{H}}_{2} {\text{O}}}} \, = 0.2\,{\text{atm}}} \right) \). The results indicated that, for 100 g of slags, upon increasing slag basicity (CaO/SiO2) from 1.0 to 2.5, both the produced H2 gas and magnetic spinel phase first increased and then decreased, with the maximum amounts being 0.09 g of gas and 37.00 g of magnetic spinel phase at the slag basicity of 1.50. For the FeO concentration increasing from 15 to 30 pct, the amounts of both the produced H2 gas and magnetic spinel phase increased from 0.04 to 0.10 g and from 18.00 to 27.00 g, respectively. The reaction rate between the molten CaO-SiO2-FeO-MnO-Al2O3-MgO slag and the moisture \( \left( {P_{{{\text{H}}_{2} {\text{O}}}} \, = 0.2\,{\text{atm}}} \right) \) increased with the increasing FeO activity in the slag. The dependence of the reaction rate (mol/cm2/s) on FeO content can be expressed as \( r \, = (7.67\left( {a_{\text{FeO}} } \right) - 2.99) \times 10^{ - 7} \).

Notes

Acknowledgments

This work was supported by the Innovate UK (for Tata Steel UK), EPSRC (for the University of Warwick EP/M507829/1), and MOST (Ministry of Science and Technology) China (for the USTB and Shougang Corp.) under the Project No. 102170. The author Zushu Li would like to thank EPSRC for financial support under Grant No. EP/N011368/1.

References

  1. 1.
    H. Motz and J. Geiseler: Waste Manage., 2001, vol. 21, pp. 285-93.CrossRefGoogle Scholar
  2. 2.
    H. Yi, G. Xu, H. Cheng, J. Wang, Y. Wan and H. Chen: Procedia Environmental Sciences, 2012, vol. 16, pp. 791-801.CrossRefGoogle Scholar
  3. 3.
    E. Kasai, T. Kitajima, T. Akiyama, J.I. Yagi and F. Saito: ISIJ Int., 1997, vol. 37, pp. 1031-36.CrossRefGoogle Scholar
  4. 4.
    M.L. Andrade, L. Almeida, M. Rangel, F. Pompeo and N. Nichio: Chem. Eng. Technol., 2014, vol. 37, pp. 343-48.CrossRefGoogle Scholar
  5. 5.
    A.W. Bhutto, A.A. Bazmi and G. Zahedi: Prog. Energy Combust. Sci., 2013, vol. 39, pp. 189-214.CrossRefGoogle Scholar
  6. 6.
    S. Shabbar and I. Janajreh: Energy Convers. Manag., 2013, vol. 65, pp. 755-63.CrossRefGoogle Scholar
  7. 7.
    A.V. Bridgwater: Fuel, 1995, vol. 74, pp. 631-53.CrossRefGoogle Scholar
  8. 8.
    S. Luo, C. Yi and Y. Zhou: Renew Energy, 2013, vol. 50, pp. 373-77.CrossRefGoogle Scholar
  9. 9.
    V. Hacker, R. Fankhauser, G. Faleschini, H. Fuchs, K. Friedrich, M. Muhr and K. Kordesch: J. Power Sources, 2000, vol. 86, pp. 531-35.CrossRefGoogle Scholar
  10. 10.
    B. Malvoisin, F. Brunet, J. Carlut, G.M. Hernandez, N. Findling, M. Lanson, O. Vidal, J.Y. Bottero and G. Bruno: Int. J. Hydrog. Energy, 2013, vol. 38, pp. 7382-93.CrossRefGoogle Scholar
  11. 11.
    J. Nakano and J. Bennett: Int. J. Hydrog. Energy, 2014, vol. 39, pp. 4954-58.CrossRefGoogle Scholar
  12. 12.
    K. Nishioka, T. Maeda and M. Shimizu: ISIJ Int., 2006, vol. 46, pp. 427-33.CrossRefGoogle Scholar
  13. 13.
    Y. Kang and K. Morita: ISIJ Int., 2006, vol. 46, pp. 420-26.CrossRefGoogle Scholar
  14. 14.
    H.G. Ryu, Z.T. Zhang, J.W. Cho, G.H. Wen and S. Sridhar: ISIJ Int., 2010, vol. 50, pp. 1142-50.CrossRefGoogle Scholar
  15. 15.
    Y.Q. Sun, H.W. Shen, H. Wang, X.D. Wang and Z.T. Zhang: Energy, 2014, vol. 76, pp. 761-67.CrossRefGoogle Scholar
  16. 16.
    T. Nomura, N. Okinaka and T. Akiyama: ISIJ Int., 2010, vol. 50, pp. 1229-39.CrossRefGoogle Scholar
  17. 17.
    Y.Q. Sun, Z.T. Zhang, L.L. Liu and X.D. Wang: Energies, 2014, vol. 7, pp. 1673-84.CrossRefGoogle Scholar
  18. 18.
    J. Li, D. Bhattacharjee, X. Hu, D. Zhang, S. Sridhar and Z. Li: Mineral Processing and Extractive Metallurgy, 2017, vol. 126, pp. 94-105.CrossRefGoogle Scholar
  19. 19.
    K. Morita, M. Guo, N. Oka and N. Sano: Journal of Material Cycles and Waste Management, 2002, vol. 4, pp. 93-101.Google Scholar
  20. 20.
    S.L. Teasdale and P.C. Hayes: ISIJ Int., 2005, vol. 45, pp. 642-50.CrossRefGoogle Scholar
  21. 21.
    B. Bhoi, A.K. Jouhari, H.S. Ray and V.N. Misra: Ironmaking & Steelmaking, 2006, vol. 33, pp. 245-52.CrossRefGoogle Scholar
  22. 22.
    A. Semykina, J. Nakano, S. Sridhar, V. Shatokha and S. Seetharaman: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 471-76.CrossRefGoogle Scholar
  23. 23.
    A. Semykina, J. Nakano, S. Sridhar, V. Shatokha and S. Seetharaman: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 940-45.CrossRefGoogle Scholar
  24. 24.
    A. Semykina: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 56-63.CrossRefGoogle Scholar
  25. 25.
    D. Bhattacharjee, T. Mukharjee and V. Tathavadkar: 2007. Set-up for production of hydrogen gas by thermos-chemical decomposition of water using steel plant slag and waste materials. Tata Steel Limited, Publication No.: WO2007125537 A1.Google Scholar
  26. 26.
    T. Mukherjee and D. Bhattacharjee: 2007. A method for producing hydrogen and/or other gases from steel plant wastes and waste heat, Tata Steel Limited, Publication No.: WO2007036953 A1.Google Scholar
  27. 27.
    H. Matsuura and F. Tsukihashi: ISIJ Int., 2012, vol. 52, pp. 1503-12.CrossRefGoogle Scholar
  28. 28.
    M. Sato, H. Matsuura and F. Tsukihashi: ISIJ Int., 2012, vol. 52, pp. 1500-02.CrossRefGoogle Scholar
  29. 29.
    B.R. Sant and T.P. Prasad: Talanta, 1968, vol. 15, pp. 1483-86.CrossRefGoogle Scholar
  30. 30.
    P.C. Glaws and G.R. Belton: Metal. Trans. B, 1990, vol. 21B, pp. 511-19.CrossRefGoogle Scholar
  31. 31.
    R.G. Ward: An Introduction to the Physical Chemistry of Iron & Steel Making. Edward Arnold LTD, London, 1962, pp. 9-10.Google Scholar
  32. 32.
    M. Sugata, T. Sugivama and S. Kondo: Tetsu-to-Hagané, 1972, vol. 10, pp. 11-23.Google Scholar
  33. 33.
    S. Hara and K. Ogini: Tetsu-to-Hagané, 1990, vol. 76, pp. 54-61.Google Scholar
  34. 34.
    K.L. Fetters and J. Chipman: Trans. AIME, 1941, vol. 145, pp. 95-112.Google Scholar
  35. 35.
    E.T. Turkdogan and J. Pearson: J. Iron Steel Inst., 1953, vol. 173, pp. 217-23.Google Scholar
  36. 36.
    C.R. Taylor and J. Chipman: Trans. AIME, 1943, vol. 154, pp. 228-47.Google Scholar
  37. 37.
    V.D. Eisenhuttenleute: Slag Atlas., 2nd ed., Verlag Stahleisen GmbH, Dusseldorf/Germany, 1995, pp. 254-55.Google Scholar
  38. 38.
    D.J. Min, J.W. Han and W.S. Chung: Metall. Mater. Trans. B, 1999, vol. 30, pp. 215-21.CrossRefGoogle Scholar
  39. 39.
    V. Shatokha, I. Sokur and L. Kamkina: J. Sustain. Metall., 2016, vol. 2, pp. 116-22.CrossRefGoogle Scholar
  40. 40.
    S. Basu, A.K. Lahiri and S. Seetharaman: Metall. Mater. Trans. B, 2008, vol. 39, pp. 447-56.CrossRefGoogle Scholar
  41. 41.
    T. Kishimoto, M. Hasegawa, K. Ohnuki, T. Sawai, and M. Iwase: Steel Res. Int., 2005, vol. 76, pp. 341-47.CrossRefGoogle Scholar
  42. 42.
    C. Bodsworth: J. Iron Steel Inst., 1959, vol. 193, pp. 13-24.Google Scholar
  43. 43.
    S. Taniguchi, A. Kikuchi, S. Maeda: Tetsu-to-Hagane, 1977, vol. 63, pp. 1071-80.CrossRefGoogle Scholar
  44. 44.
    J.R. Welty, C.E. Wicks, R.E. Wilson and G. Rorrer: Fundamentals of Momentum, Heat and Mass Transfer, 5th ed., John Wiley & Sons, New York, NY, 2007, pp.686-90.Google Scholar
  45. 45.
    P. Křenek: Plasma Chemistry and Plasma Processing. 2008, vol. 28, pp. 107-122.CrossRefGoogle Scholar
  46. 46.
    S. Ranjan, S. Sridhar and R.J. Fruehan: Energy & Fuels, 2010, vol. 24, pp. 5002–5007.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Juncheng Li
    • 1
  • Debashish Bhattacharjee
    • 2
  • Xiaojun Hu
    • 3
  • Dianwei Zhang
    • 4
  • Seetharaman Sridhar
    • 5
  • Zushu Li
    • 6
    Email author
  1. 1.School of Material Science and EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Tata Steel Research & DevelopmentRotherhamUK
  3. 3.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingP.R. China
  4. 4.Shougang Research Institute of Technology (Technical Centre)BeijingP.R. China
  5. 5.Department for Metallurgical and Materials EngineeringColorado School of MinesGoldenUSA
  6. 6.WMGUniversity of WarwickCoventryUK

Personalised recommendations