Advertisement

Effect of SiO2 on the Formation of Acicular Calcium Ferrite in Sinter

  • Wei Wang
  • Daiwei Yang
  • Zelin Ou-Yang
  • Runsheng XuEmail author
  • Mingming SongEmail author
Article
  • 5 Downloads

Abstract

SiO2 greatly influences the formation of acicular calcium ferrite (ACF), which is the main binder phase in sinter, but the mechanism of its influence is not yet clear. Experiments were carried out under air at 1200 °C with different amounts of SiO2 mixed with Fe2O3 and Ca(OH)2. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and three-dimensional (3D) reconstruction were used to characterize the phase and morphological changes of the sintered samples. The results show that SiO2 can form silicon-ferrite of calcium (SFC), which is beneficial to the formation of ACF in sinter. The SFC content first increased and then decreased with the increasing SiO2 content. The sintered sample contained the highest contents of SFC and ACF when w(SiO2) was 3 to 4 pct. The morphological changes in calcium ferrite observed with the increasing SiO2 content followed a sequence of massive → platy → acicular; both platy calcium ferrite and ACF were the longest in one direction in their 3D morphology. The inclusion of Si4+ in calcium ferrite crystals changes the crystal growth habit from having no obvious orientation to having a preferential orientation along the (040) or (320) surfaces, as determined by the first-principles calculations and XRD analysis of block samples. Viscosity was the main environmental factor influencing the size of ACF in samples with sufficient liquid phase.

Notes

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (51474164) and the China Postdoctoral Science Foundation (2016M602378).

Reference

  1. 1.
    Y. Yu, G. Feng, D. Su, J: Iron. Steel Res. Int., 2008, vol. 15, pp. 9-14.CrossRefGoogle Scholar
  2. 2.
    X. Ding, X.M. Guo: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1221-1231.CrossRefGoogle Scholar
  3. 3.
    T. Murakami, T, Kodaira. E. Kasai: ISIJ Int., 2015, vol. 55, pp. 1197-1205.CrossRefGoogle Scholar
  4. 4.
    Z.W. Ying, L.X. Xu, M.F. Jiang,Y.S. Shen: Iron. Steel Res. Int., 2006, vol. 18, pp. 55-58.Google Scholar
  5. 5.
    Z. Wang, D. Pinson, S. Chew, B.J. Monaghan: ISIJ Int., 2016, vol. 56, pp. 1138-1147.CrossRefGoogle Scholar
  6. 6.
    T. Murakami, T. Kodaira, E. Kasai: ISIJ Int., 2015, vol. 55, pp. 1181-1187.CrossRefGoogle Scholar
  7. 7.
    Y. Wang, J. Zhang, F. Zhang, G. Lou, J: Iron. Steel Res. Int., 2011, vol. 18, pp. 1-7.Google Scholar
  8. 8.
    N.V.Y. Scarlett, M.I. Pownceby, I.C. Madsen, A.N. Christensen: Metall. Mater. Trans. B, 2004, vol. 35, pp. 929-936.CrossRefGoogle Scholar
  9. 9.
    T. Umadevi, S. Prakash, U.K. Bandopadhyay, P.C. Mahapatra, M. Prabhu, M. Ranjan: World Steel, 2010, vol. 1, pp. 12–18.Google Scholar
  10. 10.
    Y. Hida, J. Okazaki, K. Itoh, M. Sasaki: Tetsu-to-Hagané, 1987, vol. 73, pp. 1893-1900.CrossRefGoogle Scholar
  11. 11.
    Z.W. Yan, J.L. Zhang, Y.P. Zhang, Z.L. Chen, Y.Z. Wang, B. Gao, Y. Zhang: Chinese Journal of Engineering, 2016, vol. 38, pp. 913-919.Google Scholar
  12. 12.
    H. Zhong, L. Wen, C. Zou, C. Bai: Metallurgical & Materials Transactions B, 2015, vol. 46, pp. 1-8.Google Scholar
  13. 13.
    W. Wang, N.C. Chen, Q.H. Li, X. Tang: Advanced Materials Research, 2012, vol. 412, pp. 432-435.CrossRefGoogle Scholar
  14. 14.
    X. Ding, X.M. Guo: Iron and Steel, 2015, vol. 50, pp. 33-38.Google Scholar
  15. 15.
    L. Cheng, K.M. Wu: ISIJ Int., 2008, vol. 48, pp.830-834.CrossRefGoogle Scholar
  16. 16.
    W. Wang, M. Deng, R.S. Xu, W.B. Xu, Z.L. Ouyang, X.B. Huang, Z.L. Xue: J. Iron. Steel Res. Int., 2017, vol. 24, pp. 998-1006.CrossRefGoogle Scholar
  17. 17.
    X. Ding, X.M. Guo: Int. J. Miner. Process., 2016, vol. 149, pp. 69-77.CrossRefGoogle Scholar
  18. 18.
    J.D.G. Hamilton, B.F. Hoskins, W.G. Mumme, W.E. Borbidge, M.A. Montague: Neues Jahrbuch für Mineralogie Abhandlungen, 1989, vol.161, pp. 1–26.Google Scholar
  19. 19.
    T.R.C. Patrick, M.I. Pownceby: Metall. Mater. Trans. B, 2002, vol. 33, pp. 79-89.CrossRefGoogle Scholar
  20. 20.
    K. Inoue, T. Iked: Tetsu-to-Hagané, 1982, vol. 68, pp. 2190-2199.CrossRefGoogle Scholar
  21. 21.
    N.S. Tavare, J. Garside: Chem. Eng. Res. Des., 1986, vol. 64, pp. 109-118.Google Scholar
  22. 22.
    M. Ohyama, H. Kouzuka, T. Yoko: Thin Solid Films, 1997, vol. 306, pp. 78-85.CrossRefGoogle Scholar
  23. 23.
    P. Curie, Bull: Soc. Fr. Mineral, 1885, vol. 8, pp. 145.Google Scholar
  24. 24.
    C. Lin, W. Qin, C. Dong: Chem. Eng. J., 2016, vol. 301, pp. 257-265.CrossRefGoogle Scholar
  25. 25.
    H. Zhong, L. Wen, C. Zou, S. Zhang, S. Bai: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1-8.Google Scholar
  26. 26.
    C.Q. Dong, S.H. Sheng, W. Qin, Q. Lu, Y. Zhao, X.Q. Wang, J.J. Zhang: Appl. Surf. Sci., 2011, vol. 257, pp. 8647-8652.CrossRefGoogle Scholar
  27. 27.
    E.F. Osborn, A. Muan: American Ceramic Society with the Edward Orton Jr, Ceramic Foundation, Columbus/Ohio, 1960.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.Hubei Provincial Engineering Technology Research Center of Metallurgical Secondary ResourcesWuhan University of Science and TechnologyWuhanChina

Personalised recommendations