Additive Manufacturing of a Steel–Ceramic Multi-Material by Selective Laser Melting
- 27 Downloads
Abstract
Most techniques employed for powder bed additive manufacturing (AM) only can handle a single material. However, additional functionality of the structures built, e.g., local insulation, is desirable for more sophisticated applications. In the present work, a multi-material process allowing for realization of a ceramic coating on a steel substrate and a novel sandwich system are introduced. Both were manufactured by selective laser melting (SLM). As a first step, the microstructure of a bulk zirconia–alumina ceramic, directly manufactured by SLM, was examined and its tensile strength determined. Afterwards, the ceramic was manufactured directly on the as-built surface of a tool steel processed by SLM. For this compound, the adhesive strength was determined. Finally, an open porous structure, made of the same tool steel, was built on top of the ceramic layer. The results clearly prove that the SLM process can be used for direct manufacturing of a multi-material sandwich structure made from metal and ceramic, providing an important step towards complex structures functionalized for electric insulation.
Notes
References
- 1.W. Meiners: Direktes selektives Laser-Sintern einkomponentiger metallischer Werkstoffe, Dissertation, Aachen, 1999.Google Scholar
- 2.I Gibson, D Rosen, and B Stucker: Additive Manufacturing Technologies, 2nd ed., Springer Science+Buisness Media, New York, 2009.Google Scholar
- 3.Andreas Gebhardt and Jan-Steffen Hötter: Additive Manufacturing: 3D Printing for Prototyping and Manufacturing, Carl Hanser Verlag, München, 2016.CrossRefGoogle Scholar
- 4.Dirk Herzog, Vanessa Seyda, Eric Wycisk, and Claus Emmelmann: Acta Mater., 2016, vol. 117, pp. 371–92.CrossRefGoogle Scholar
- 5.T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.CrossRefGoogle Scholar
- 6.E. Malone and H. Lipson: in Proceedings of the ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis, 2008, pp. 345–53.Google Scholar
- 7.Dirk Lehmhus, Claus Aumund-Kopp, Frank Petzoldt, Dirk Godlinski, Arne Haberkorn, Volker Zöllmer, and Matthias Busse: Procedia Technol., 2016, vol. 26, pp. 284–301.CrossRefGoogle Scholar
- 8.F. Brueckner, A. Seidel, E. Lopéz, C. Leyens, and E. Beyer: Solid Free. Fabr. Symp., 2017, pp. 2530–38.Google Scholar
- 9.Mohammad Vaezi, Srisit Chianrabutra, Brian Mellor, and Shoufeng Yang: Virtual Phys. Prototyp., 2013, vol. 8, pp. 19–50.CrossRefGoogle Scholar
- 10.Z H Liu, D Q Zhang, S L Sing, C K Chua, and L E Loh: Mater. Charact., 2014, vol. 94, pp. 116–25.CrossRefGoogle Scholar
- 11.S L Sing, L P Lam, D Q Zhang, Z H Liu, and C K Chua: Mater. Charact., 2015, vol. 107, pp. 220–27.CrossRefGoogle Scholar
- 12.A.G. Demir and B. Previtali: Manuf. Lett., 2017, vol. 11, pp. 8–11.CrossRefGoogle Scholar
- 13.A. Syed-Khaja and J. Franke: in Proceedings of Electronic Components and Technology Conference, 2016, pp. 837–42.Google Scholar
- 14.A.-M. Nagel and H. Exner: in Proceedings of SPIE—International Society for Optical Engineering, 1999.Google Scholar
- 15.Kai Zhang, Tingting Liu, Wenhe Liao, Changdong Zhang, Daozhong Du, and Yi Zheng: Optik (Stuttg)., 2018, vol. 156, pp. 487–97.CrossRefGoogle Scholar
- 16.Zhiqi Fan, Mingyuan Lu, and Han Huang: Ceram. Int., 2018, vol. 44, pp. 9484–93.CrossRefGoogle Scholar
- 17.J.I. Wilkes: Selektives Laserschmelze zur generativen Herstellung von Bauteilen aus hochfester Oxidkeramik, Dissertation, Aachen, 2009.Google Scholar
- 18.Qi Liu, Yoann Danlos, Bo Song, Baicheng Zhang, Shuo Yin, and Hanlin Liao: J. Mater. Process. Technol., 2015, vol. 222, pp. 61–74.CrossRefGoogle Scholar
- 19.Julian Krell, Arne Röttger, Karina Geenen, and Werner Theisen: J. Mater. Process. Technol., 2018, vol. 255, pp. 679–88.CrossRefGoogle Scholar
- 20.H.L. Calambás Pulgarín and M.P. Albano: Procedia Mater. Sci., 2015, vol. 8, pp. 180–89.Google Scholar
- 21.A. Baumann: Pulverspritzgießen von Metall-Keramik-Verbunden, Dissertation, Freiberg, 2010.Google Scholar
- 22.A.M. Alper: in Ceramic Microstructures: Their Analysis, Significance, and Production, R.M. Fulrath and J.A. Pask, eds., Wiley, New York, 1969, pp. 763–99.Google Scholar
- 23.Fangyong Niu, Dongjiang Wu, Guangyi Ma, Jiangtian Wang, Juan Zhuang, and Zhuji Jin: Procedia CIRP, 2016, vol. 42, pp. 91–95.CrossRefGoogle Scholar
- 24.Ralf Bürgel: Handbuch Hochtemperatur-Werkstofftechnik, 3rd ed., Friedrich Vieweg & Sohn Verlag, Wiesbaden, 2006.Google Scholar
- 25.N Mesrati, H Ajhrourh, Nguyen Du, and D Treheux: J. Therm. Spray Technol., 2000, vol. 9, pp. 95–99.CrossRefGoogle Scholar
- 26.K. Suganuma, Y. Miyamoto, and M. Koizumi: Weld. Int., 1987, vol. 1, pp. 875–78.CrossRefGoogle Scholar
- 27.M. Leary: Surface Roughness Optimisation for Selective Laser Melting (SLM): Accommodating Relevant and Irrelevant Surfaces, Elsevier, 2016.Google Scholar
- 28.Jason C. Fox, Shawn P. Moylan, and Brandon M. Lane: Procedia CIRP, 2016, vol. 45, pp. 131–34.CrossRefGoogle Scholar
- 29.Giovanni Strano, Liang Hao, Richard M. Everson, and Kenneth E. Evans: J. Mater. Process. Technol., 2013, vol. 213, pp. 589–97.CrossRefGoogle Scholar
- 30.W. Kniffka, M. Eichmann, G. Witt, and R. Stache: in Rapid. Tech Int. Trade Show Conference for Additive Manufacturing, W. Kniffka, G. Witt, and M. Eichmann, eds., Carl Hanser Verlag GmbH & Co. KG, 2016, pp. 380–89.Google Scholar
- 31.Sergij M. Lakiza and Lidia M. Lopato: J. Am. Ceram. Soc., 1997, vol. 80, pp. 893–902.CrossRefGoogle Scholar
- 32.Ellen Ivers-Tiffée and Waldemar von Münch: Werkstoffe Der Elektrotechnik, 9th ed., Vieweg+Teubner Verlag, Wiesbaden, 2004.CrossRefGoogle Scholar
- 33.C. H. Cáceres, C. J. Davidson, J. R. Griffiths, and C. L. Newton: Mater. Sci. Eng. A, 2002, vol. 325, pp. 344–55.CrossRefGoogle Scholar
- 34.Jianbing Yu, You Wang, Feifei Zhou, Liang Wang, and Zhaoyi Pan: Appl. Surf. Sci., 2018, vol. 431, pp. 112–21.CrossRefGoogle Scholar