Advertisement

An Electro-Assisted Powder Metallurgical Route for the Preparation of Porous Ti and NiTi in Molten CaCl2

  • Xue Ma
  • Hongwei Xie
  • Jiakang Qu
  • Qiushi Song
  • Zhiqiang Ning
  • Haijia Zhao
  • Huayi YinEmail author
Article
  • 11 Downloads

Abstract

Molten salts can provide a high-temperature and oxygen-water-free environment, and the electrochemical polarization is able to reduce the oxide scale on the surface of Ti and Ni particles in molten salts and, thereby, enhance the sintering and accelerating atom diffusion between Ti and Ni. Thus, an electro-assisted powder metallurgical (EPM) approach was developed to prepare porous Ti and NiTi from metal powders in molten salts, where the porous pellet cathode made of the mixture of Ni and Ti powders is electrochemically polarized to facilitate the generation of the porous Ti and NiTi at a temperature lower than 1000 °C. The electrolytic product obtained under a cell voltage of 3 V for 12 hours is nearly pure NiTi with a tiny amount of undesired Ni3Ti and NiTi2 phases. Overall, the EPM route could be a straightforward and general way to prepare porous Ti and Ti-alloys for implants and other applications.

Notes

Acknowledgments

We greatly appreciate the financial support from the NSFC (Grant Nos. 51704060 and 51334004), the National Thousand Youth Talent Program of China, the Fundamental Research Funds for the Central Universities (Grant No. N172505002), and the 111 Project (Grant No. B16009).

References

  1. 1.
    C. Leyens and M. Peters: Titanium and Titanium Alloys. Fundamentals and Applications, Wiley-VCH, Weinheim, 2003.CrossRefGoogle Scholar
  2. 2.
    Sebastian Bauer, Patrik Schmuki, Klaus Von Der Mark, and Jung Park: Progr. Mater. Sci., 2013, vol. 58, pp. 261–326.Google Scholar
  3. 3.
    Klaus Von Der Mark and Jung Park: Progr. Mater. Sci., 2013, vol. 58, pp. 327–81.CrossRefGoogle Scholar
  4. 4.
    M. Long and H.J. Rack: Biomaterials, 1998, vol. 19, pp. 1621–39.CrossRefGoogle Scholar
  5. 5.
    A. Bansiddhi, T.D. Sargeant, S.I. Stupp, and D.C. Dunand: Acta Biomater., 2008, vol. 4, pp. 773–82.CrossRefGoogle Scholar
  6. 6.
    G. Ryan, A. Pandit, and D.P. Apatsidis: Biomaterials, 2006, vol. 27, pp. 2651–70.CrossRefGoogle Scholar
  7. 7.
    A Bandyopadhyay, F Espana, VK Balla, S Bose, Y Ohgami, and N.M. Davies: Acta Biomater., 2010, vol. 6, pp. 1640–48.CrossRefGoogle Scholar
  8. 8.
    M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri: Progr. Mater. Sci., 2012, vol. 57, pp. 911–46.CrossRefGoogle Scholar
  9. 9.
    Cristina Balagna, Alessandro Fais, Katya Brunelli, Luca Peruzzo, Miroslava Horynová, Ladislav Čelko, and Silvia Spriano: Intermetallics, 2016, vol. 68, pp. 31–41.CrossRefGoogle Scholar
  10. 10.
    H. Inoue, M. Ishio, and T. Takasugi: Acta Mater., 2003, vol. 51, pp. 6373–83.CrossRefGoogle Scholar
  11. 11.
    N. Sharma, K.K. Jangra, and T. Raj: Proc. Inst. Mech. Eng. Pt. L-J. Mater. Design Appl., 2018, vol. 232, pp. 250–69.Google Scholar
  12. 12.
    J.S. Kim, J.H. Kang, S.B. Kang, K.S. Yoon, and Y.S. Kwon: Adv. Eng. Mater., 2004, vol. 6, pp. 403–06.CrossRefGoogle Scholar
  13. 13.
    B.Y. Li, L.J. Rong, and Y.Y. Li: J. Mater. Res., 1998, vol. 13, pp. 2847–51.CrossRefGoogle Scholar
  14. 14.
    Jiao Luo, Wan-jun Ye, Xiao-xiao Ma, John O. Bobanga, and John J. Lewandowski: J. Alloys Compd., 2018, vol. 735, pp. 1145–51.CrossRefGoogle Scholar
  15. 15.
    G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–64.CrossRefGoogle Scholar
  16. 16.
    A.M. Abdelkader, K. TripuraneniKilby, A. Cox, and D.J. Fray: Chem. Rev., 2013, vol. 113, pp. 2863–86.CrossRefGoogle Scholar
  17. 17.
    Wei Xiao and Dihua Wang: Chem. Soc. Rev., 2014, vol. 43, pp. 3215–28.CrossRefGoogle Scholar
  18. 18.
    D.H. Wang, X.B. Jin, and G.Z. Chen: Annu. Rep. Prog. Chem. Sect. C, 2008, vol. 104, pp. 189–234.CrossRefGoogle Scholar
  19. 19.
    T. Nohira, K. Yasuda, and Y. Ito: Nat. Mater., 2003, vol. 2, pp. 397–401.CrossRefGoogle Scholar
  20. 20.
    X.B. Jin, P. Gao, D.H. Wang, X.H. Hu, and G.Z. Chen: Angew. Chem. Int. Ed., 2004, vol. 43, pp. 733–36.CrossRefGoogle Scholar
  21. 21.
    Di Hu, Aleksei Dolganov, Mingchan Ma, Biyash Bhattacharya, Matthew T. Bishop, and George Z. Chen: JOM, 2018, vol. 70, pp. 129–37.CrossRefGoogle Scholar
  22. 22.
    Antoine Allanore, Lan Yin, and Donald R. Sadoway: Nature, 2013, vol. 497, pp. 353–56.CrossRefGoogle Scholar
  23. 23.
    Antoine Allanor: J. Electrochem. Soc., 2015, vol. 162, pp. E13–E22.CrossRefGoogle Scholar
  24. 24.
    Dihua Wang, Andrew J. Gmitter, and Donald R. Sadoway: J. Electrochem. Soc., 2011, vol. 158, pp. E51–E54.CrossRefGoogle Scholar
  25. 25.
    Sulata K. Sahu, Brian Chmielowiec, and Antoine Allanore: Electrochim. Acta, 2017, vol. 243, pp. 382–89.CrossRefGoogle Scholar
  26. 26.
    Caspar Stinn, Katsuhiro Nose, Toru Okabe, and Antoine Allanore: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2922–29.CrossRefGoogle Scholar
  27. 27.
    H Yin, B Chung, and D.R. Sadoway: Nat. Commun., 2016, vol. 7, p. 12584.CrossRefGoogle Scholar
  28. 28.
    Tao Wang, Haiping Gao, Xianbo Jin, Hualin Chen, Junjun Peng, and George Z. Chen: Electrochem. Commun., 2011, vol. 13, pp. 1492–95.CrossRefGoogle Scholar
  29. 29.
    Y. Zhu, M. Ma, D.H. Wang, K. Jiang, X.H. Hu, X.B. Jin, and G.Z. Chen: Chin. Sci. Bull., 2006, vol. 51, pp. 2535–40.CrossRefGoogle Scholar
  30. 30.
    S.Q. Jiao, L.L. Zhang, H.M. Zhu, and D.J. Fray: Electrochim. Acta, 2010, vol. 55, pp. 7016–20.CrossRefGoogle Scholar
  31. 31.
    B. Jackson, M. Jackson, D. Dye, D. Inman, and R. Dashwood: J. Electrochem. Soc., 2008, vol. 155, pp. E171–E177.CrossRefGoogle Scholar
  32. 32.
    J.J. Peng, H.L. Chen, X.B. Jin, T. Wang, D.H. Wang, and G.Z. Chen: Chem. Mater., 2009, vol. 21, pp. 5187–95.CrossRefGoogle Scholar
  33. 33.
    H.Y. Yin, T. Yu, D.Y. Tang, X.F. Ruan, H. Zhu, and D.H. Wang: Mater. Chem. Phys., 2011, vol. 123, in press.Google Scholar
  34. 34.
    X.Y. Yan and D.J. Fray: Adv. Funct. Mater., 2005, vol. 15, pp. 1757–61.CrossRefGoogle Scholar
  35. 35.
    X.Y. Yan and D.J. Fray: J. Alloys Compd., 2009, vol. 486, pp. 154–61.CrossRefGoogle Scholar
  36. 36.
    Xingli Zou, Xionggang Lu, Zhongfu Zhou, and Chonghe Li: Electrochem. Commun., 2012, vol. 21, pp. 9–13.CrossRefGoogle Scholar
  37. 37.
    Shangshu Li, Xingli Zou, Kai Zheng, Xionggang Lu, Qian Xu, Chaoyi Chen, and Zhongfu Zhou: J. Alloys Compd., 2017, vol. 727, pp. 1243–52.CrossRefGoogle Scholar
  38. 38.
    G.Z. Chen and D.J. Fray: in Light Metals 2001, J.L. Anjier, ed., TMS, Warrendale, PA, 2001, pp. 1147–51.Google Scholar
  39. 39.
    Wei Xiao, Xianbo Jin, Yuan Deng, Dihua Wang, Xiaohong Hu, and George Z. Chen: Chem. Phys. Chem., 2006, vol. 7, pp. 1750–58.CrossRefGoogle Scholar
  40. 40.
    W Xiao, X Jin, Y Deng, D Wang, and G.Z. Chen: Chem. A Eur. J., 2007, vol. 13, pp. 604–12.CrossRefGoogle Scholar
  41. 41.
    Hualin Chen, Yi Zeng, Wei Li, Junjun Peng, Xianbo Jin, and George Z. Chen: Electrochem. Commun., 2013, vol. 26, pp. 33–36.CrossRefGoogle Scholar
  42. 42.
    K. Jiang, X.H. Hu, M. Ma, D.H. Wang, G.H. Qiu, X.B. Jin and G.Z. Chen: Angew. Chem. Int. Ed., 2006, vol. 45, pp. 428–32.CrossRefGoogle Scholar
  43. 43.
    M. Ma, D.H. Wang, W.G. Wang, X.H. Hu, X.B. Jin, and G.Z. Chen: J. Alloys Compd., 2006, vol. 420, pp. 37–45.CrossRefGoogle Scholar
  44. 44.
    R. Dashwood, M. Jackson, K. Dring, K. Rao, R. Bhagat, and D. Inman: Innov. Titan. Technol., 2007, vol. 49,. pp. 49–58.Google Scholar
  45. 45.
    A.V. Bakulin, T.I. Spiridonova, and S.E. Kulkova: Comput. Mater. Sci., 2018, vol. 148, pp. 1–9.CrossRefGoogle Scholar
  46. 46.
    C.G. Garay-Reyes, F. Hernandez-Santiago, N. Cayetano-Castro, R. Martinez-Sanchez, J.L. Hernandez-Rivera, H.J. Dorantes-Rosalese, and J.J. Cruz-Rivera: Bull. Mater. Sci., 2014, vol. 37, pp. 823–29.CrossRefGoogle Scholar
  47. 47.
    C. Wang and D.C. Dunand: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 6252–59.CrossRefGoogle Scholar
  48. 48.
    A. Puente and D.C. Dunand: Intermetallics, 2018, vol. 92, pp. 42–48.CrossRefGoogle Scholar
  49. 49.
    Lifang Hu, Yongzhi Xue, and Fangrong Shi: Mater. Des., 2017, vol. 130, pp. 175–82.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Xue Ma
    • 1
  • Hongwei Xie
    • 1
  • Jiakang Qu
    • 1
  • Qiushi Song
    • 1
  • Zhiqiang Ning
    • 1
  • Haijia Zhao
    • 1
  • Huayi Yin
    • 1
    Email author
  1. 1.School of MetallurgyNortheastern UniversityShenyangP.R. China

Personalised recommendations