Unexpected Charpy Impact Toughness Spike of 1.25Cr-0.5Mo Steel After Simulated Postweld Heat Treatment

  • Yang Shen
  • Cong WangEmail author
Topical Collection: 2019 Metallurgical Processes Workshop for Young Scholars
Part of the following topical collections:
  1. International Metallurgical Processes Workshop for Young Scholars (IMPROWYS 2019)
  2. International Metallurgical Processes Workshop for Young Scholars (IMPROWYS 2019)


The present study elaborates on the effect of simulated postweld heat treatment (SPWHT) on microstructure and mechanical property variations of 1.25Cr-0.5Mo steel. With the increase in SPWHT holding time, lath ferrite tends to morph into blocky ferrite, and carbides aggregate along grain boundaries. Although tensile strength keeps decreasing, Charpy impact toughness undergoes a spike, followed by a sharp decrease. Such an interesting phenomenon is explained by the competition between high-angle grain boundary population and carbide segregation, and bodes well to the pressure vessel industry for optimized PWHT.



The authors acknowledge the financial supports from National Natural Science Foundation of China (51622401, 51628402, BRICS 51861145312, NAF 51861130361), National Key Research and Development Program of China (2016YFB0300602), Research Fund for Central Universities (N172502004), State Key Laboratory of Solidification Processing, Northwestern Polytechnical University (SKLSP201805), and Global Talents Recruitment Program endowed by the Chinese Government. The authors also greatly appreciate the support from Jiangyin Xingcheng Special Steel Works Co., Ltd.


  1. 1.
    B. Raj, B.K. Choudhary, and R.K. Singh Raman: Int. J. Press. Vessels Pip., 2004, vol. 81, pp. 521–34.Google Scholar
  2. 2.
    K. Yagi, G. Merckling, T.U. Kern, H. Irie and H. Warlimont: Creep Properties of Heat Resistant Steels and Superalloys, 2004th ed., Springer, Berlin, Heidelberg, 2004, pp. 62-66.CrossRefGoogle Scholar
  3. 3.
    J.G. Nawrocki, J.N. Dupont, C.V. Robino and A.R. Marder: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2585-2594.CrossRefGoogle Scholar
  4. 4.
    Q. Gao, X. Di, Y. Liu and Z. Yan: Int. J. Press. Vessels Pip., 2012, vol. 93, pp. 69-74.CrossRefGoogle Scholar
  5. 5.
    S.R. Ahmed, L.A. Agarwal and B.S.S. Daniel: Adv. Mater. Res., 2012, vol. 585, pp. 425-429.CrossRefGoogle Scholar
  6. 6.
    Y. Yang, Z. Wang, H. Tan, J. Hong, Y. Jiang, L. Jiang and J. Li: Corros. Sci., 2012, vol. 65, pp. 472-480.CrossRefGoogle Scholar
  7. 7.
    B. Silwal, L. Li, A. Deceuster and B. Griffiths: Weld. J., 2013, vol. 92, pp. 80-87.Google Scholar
  8. 8.
    A.G. Olabi and M.S.J. Hashmi: J. Mater. Process. Technol., 1995, vol. 55, pp. 117-122.CrossRefGoogle Scholar
  9. 9.
    C. Pandey and M.M. Mahapatra: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2761-2775.CrossRefGoogle Scholar
  10. 10.
    Y. Wang, R. Kannan and L. Li: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1264-1275.CrossRefGoogle Scholar
  11. 11.
    D.R.G. Mitchell, C.J. Moss and R.R. Griffiths: Int. J. Press. Vessels Pip., 1999, vol. 76, pp. 259-266.CrossRefGoogle Scholar
  12. 12.
    Y. Shen, H. Matsuura and C. Wang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 4413-4418.CrossRefGoogle Scholar
  13. 13.
    C. Yue, L. Zhang, S. Liao and H. Gao: J. Mater. Eng. Perform., 2010, vol. 19, pp. 112-115.CrossRefGoogle Scholar
  14. 14.
    J. Moravec: Mod. Mach. Sci. J., 2015, vol. 10, pp. 649-653.Google Scholar
  15. 15.
    M.C. Tsai and J.R. Yang: Mater. Sci. Eng., A, 2003, vol. 340, pp. 15–32.Google Scholar
  16. 16.
    N. Parvathavarthini, S. Saroja, R.K. Dayal and H.S. Khatak: J. Nucl. Mater., 2001, vol. 288, pp. 187-196.CrossRefGoogle Scholar
  17. 17.
    J. Yu: Metall. Trans. A, 1989, vol. 20, pp. 1561-1564.CrossRefGoogle Scholar
  18. 18.
    T.H. Lee, Y.J. Lee, S.H. Joo, H.H. Nersisyan, K.T. Park and J.H. Lee: Metall. Mater. Trans. A, 2015, vol. 46, pp. 4020-4026.CrossRefGoogle Scholar
  19. 19.
    A.F. Gourgues: Mater. Sci. Technol., 2013, vol. 18, pp. 119-133.CrossRefGoogle Scholar
  20. 20.
    A. Lambert-Perlade, A.F. Gourgues and A. Pineau: Acta Mater., 2004, vol. 52, pp. 2337-2348.CrossRefGoogle Scholar
  21. 21.
    H. Xie, L. Du and J. Hu: Mater. Sci. Forum, 2015, vol. 816, pp. 761-768.CrossRefGoogle Scholar
  22. 22.
    Y. You, C. Shang, W. Nie, and S. Subramanian: Mater. Sci. Eng., A, 2012, vol. 558, pp. 692–701.Google Scholar
  23. 23.
    W. Wei, Z. Wengui and Q. Jinbo: Steel Res. Int., 2013, vol. 84, pp. 178-183.CrossRefGoogle Scholar
  24. 24.
    Q. Wang, C. Li, H. Peng, J. Chen and J. Zhang: J. Mater. Eng. Perform., 2018, vol. 27, pp. 1-9.CrossRefGoogle Scholar
  25. 25.
    E.O. Hall: Proc. Phys. Soc. B, 1951, vol. 64, pp. 747-753.CrossRefGoogle Scholar
  26. 26.
    N.J. Petch: The Journal of the Iron and Steel Institute, 1953, vol. 174, pp. 25-28.Google Scholar
  27. 27.
    G.E. Totten: Steel Heat Treatment Handbook, 2nd ed., CRC Press, Taylor and Francis Group, The United States of America, 1997, p. 5.Google Scholar
  28. 28.
    H.A. Roth, C.L. Davis and R.C. Thomson: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1329-1335.CrossRefGoogle Scholar
  29. 29.
    Y. Yang, Y. Chen, K. Sridharan and T.R. Allen: Metall. Mater. Trans. A, 2010, vol. 41, pp. 1441-1447.CrossRefGoogle Scholar
  30. 30.
    Y.R. Im, Y.J. Oh, B.J. Lee, J.H. Hong and H.C. Lee: J. Nucl. Mater., 2001, vol. 297, pp. 138-148.CrossRefGoogle Scholar
  31. 31.
    K.K. Mathur, A. Needleman and V. Tvergaard: Modell. Simul. Mater. Sci. Eng., 1994, vol. 2, pp. 617-635.CrossRefGoogle Scholar
  32. 32.
    X. Li, X. Ma, S.V. Subramanian, R.D.K. Misra and C. Shang: Metall. Mater. Trans. E, 2015, vol. 2, pp. 1-11.Google Scholar
  33. 33.
    P. Yan, Z. Liu, H. Bao, Y. Weng and W. Liu: Materials Design, 2014, vol. 54, pp. 874-879.CrossRefGoogle Scholar
  34. 34.
    X. Zou, J. Sun, H. Matsuura and C. Wang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2168-2173.CrossRefGoogle Scholar
  35. 35.
    G. Hahn: Metall. Mater. Trans. A, 1984, vol. 15, pp. 947-959.CrossRefGoogle Scholar
  36. 36.
    T. Furuhara, K. Kobayashi and T. Maki: ISIJ Int., 2004, vol. 44, pp. 1937-1944.CrossRefGoogle Scholar
  37. 37.
    A. Nagao, T. Ito and T. Obinata: JFE Tech. Rep., 2008, vol. 11, pp. 13-18.Google Scholar
  38. 38.
    A.A. Barani, F. Li, P. Romano, D. Ponge, and D. Raabe: Mater. Sci. Eng., A, 2007, vol. 463, pp. 138–46.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations