Unexpected Charpy Impact Toughness Spike of 1.25Cr-0.5Mo Steel After Simulated Postweld Heat Treatment
- 20 Downloads
Abstract
The present study elaborates on the effect of simulated postweld heat treatment (SPWHT) on microstructure and mechanical property variations of 1.25Cr-0.5Mo steel. With the increase in SPWHT holding time, lath ferrite tends to morph into blocky ferrite, and carbides aggregate along grain boundaries. Although tensile strength keeps decreasing, Charpy impact toughness undergoes a spike, followed by a sharp decrease. Such an interesting phenomenon is explained by the competition between high-angle grain boundary population and carbide segregation, and bodes well to the pressure vessel industry for optimized PWHT.
Notes
Acknowledgments
The authors acknowledge the financial supports from National Natural Science Foundation of China (51622401, 51628402, BRICS 51861145312, NAF 51861130361), National Key Research and Development Program of China (2016YFB0300602), Research Fund for Central Universities (N172502004), State Key Laboratory of Solidification Processing, Northwestern Polytechnical University (SKLSP201805), and Global Talents Recruitment Program endowed by the Chinese Government. The authors also greatly appreciate the support from Jiangyin Xingcheng Special Steel Works Co., Ltd.
References
- 1.B. Raj, B.K. Choudhary, and R.K. Singh Raman: Int. J. Press. Vessels Pip., 2004, vol. 81, pp. 521–34.Google Scholar
- 2.K. Yagi, G. Merckling, T.U. Kern, H. Irie and H. Warlimont: Creep Properties of Heat Resistant Steels and Superalloys, 2004th ed., Springer, Berlin, Heidelberg, 2004, pp. 62-66.CrossRefGoogle Scholar
- 3.J.G. Nawrocki, J.N. Dupont, C.V. Robino and A.R. Marder: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2585-2594.CrossRefGoogle Scholar
- 4.Q. Gao, X. Di, Y. Liu and Z. Yan: Int. J. Press. Vessels Pip., 2012, vol. 93, pp. 69-74.CrossRefGoogle Scholar
- 5.S.R. Ahmed, L.A. Agarwal and B.S.S. Daniel: Adv. Mater. Res., 2012, vol. 585, pp. 425-429.CrossRefGoogle Scholar
- 6.Y. Yang, Z. Wang, H. Tan, J. Hong, Y. Jiang, L. Jiang and J. Li: Corros. Sci., 2012, vol. 65, pp. 472-480.CrossRefGoogle Scholar
- 7.B. Silwal, L. Li, A. Deceuster and B. Griffiths: Weld. J., 2013, vol. 92, pp. 80-87.Google Scholar
- 8.A.G. Olabi and M.S.J. Hashmi: J. Mater. Process. Technol., 1995, vol. 55, pp. 117-122.CrossRefGoogle Scholar
- 9.C. Pandey and M.M. Mahapatra: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2761-2775.CrossRefGoogle Scholar
- 10.Y. Wang, R. Kannan and L. Li: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1264-1275.CrossRefGoogle Scholar
- 11.D.R.G. Mitchell, C.J. Moss and R.R. Griffiths: Int. J. Press. Vessels Pip., 1999, vol. 76, pp. 259-266.CrossRefGoogle Scholar
- 12.Y. Shen, H. Matsuura and C. Wang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 4413-4418.CrossRefGoogle Scholar
- 13.C. Yue, L. Zhang, S. Liao and H. Gao: J. Mater. Eng. Perform., 2010, vol. 19, pp. 112-115.CrossRefGoogle Scholar
- 14.J. Moravec: Mod. Mach. Sci. J., 2015, vol. 10, pp. 649-653.Google Scholar
- 15.M.C. Tsai and J.R. Yang: Mater. Sci. Eng., A, 2003, vol. 340, pp. 15–32.Google Scholar
- 16.N. Parvathavarthini, S. Saroja, R.K. Dayal and H.S. Khatak: J. Nucl. Mater., 2001, vol. 288, pp. 187-196.CrossRefGoogle Scholar
- 17.J. Yu: Metall. Trans. A, 1989, vol. 20, pp. 1561-1564.CrossRefGoogle Scholar
- 18.T.H. Lee, Y.J. Lee, S.H. Joo, H.H. Nersisyan, K.T. Park and J.H. Lee: Metall. Mater. Trans. A, 2015, vol. 46, pp. 4020-4026.CrossRefGoogle Scholar
- 19.A.F. Gourgues: Mater. Sci. Technol., 2013, vol. 18, pp. 119-133.CrossRefGoogle Scholar
- 20.A. Lambert-Perlade, A.F. Gourgues and A. Pineau: Acta Mater., 2004, vol. 52, pp. 2337-2348.CrossRefGoogle Scholar
- 21.H. Xie, L. Du and J. Hu: Mater. Sci. Forum, 2015, vol. 816, pp. 761-768.CrossRefGoogle Scholar
- 22.Y. You, C. Shang, W. Nie, and S. Subramanian: Mater. Sci. Eng., A, 2012, vol. 558, pp. 692–701.Google Scholar
- 23.W. Wei, Z. Wengui and Q. Jinbo: Steel Res. Int., 2013, vol. 84, pp. 178-183.CrossRefGoogle Scholar
- 24.Q. Wang, C. Li, H. Peng, J. Chen and J. Zhang: J. Mater. Eng. Perform., 2018, vol. 27, pp. 1-9.CrossRefGoogle Scholar
- 25.E.O. Hall: Proc. Phys. Soc. B, 1951, vol. 64, pp. 747-753.CrossRefGoogle Scholar
- 26.N.J. Petch: The Journal of the Iron and Steel Institute, 1953, vol. 174, pp. 25-28.Google Scholar
- 27.G.E. Totten: Steel Heat Treatment Handbook, 2nd ed., CRC Press, Taylor and Francis Group, The United States of America, 1997, p. 5.Google Scholar
- 28.H.A. Roth, C.L. Davis and R.C. Thomson: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1329-1335.CrossRefGoogle Scholar
- 29.Y. Yang, Y. Chen, K. Sridharan and T.R. Allen: Metall. Mater. Trans. A, 2010, vol. 41, pp. 1441-1447.CrossRefGoogle Scholar
- 30.Y.R. Im, Y.J. Oh, B.J. Lee, J.H. Hong and H.C. Lee: J. Nucl. Mater., 2001, vol. 297, pp. 138-148.CrossRefGoogle Scholar
- 31.K.K. Mathur, A. Needleman and V. Tvergaard: Modell. Simul. Mater. Sci. Eng., 1994, vol. 2, pp. 617-635.CrossRefGoogle Scholar
- 32.X. Li, X. Ma, S.V. Subramanian, R.D.K. Misra and C. Shang: Metall. Mater. Trans. E, 2015, vol. 2, pp. 1-11.Google Scholar
- 33.P. Yan, Z. Liu, H. Bao, Y. Weng and W. Liu: Materials Design, 2014, vol. 54, pp. 874-879.CrossRefGoogle Scholar
- 34.X. Zou, J. Sun, H. Matsuura and C. Wang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2168-2173.CrossRefGoogle Scholar
- 35.G. Hahn: Metall. Mater. Trans. A, 1984, vol. 15, pp. 947-959.CrossRefGoogle Scholar
- 36.T. Furuhara, K. Kobayashi and T. Maki: ISIJ Int., 2004, vol. 44, pp. 1937-1944.CrossRefGoogle Scholar
- 37.A. Nagao, T. Ito and T. Obinata: JFE Tech. Rep., 2008, vol. 11, pp. 13-18.Google Scholar
- 38.A.A. Barani, F. Li, P. Romano, D. Ponge, and D. Raabe: Mater. Sci. Eng., A, 2007, vol. 463, pp. 138–46.Google Scholar