Advertisement

Sulfidation and Sulfur Fixation of Jarosite Residues During Reduction Roasting

  • Bo Zhang
  • Lin Zhu
  • Wei LiuEmail author
  • Junwei HanEmail author
  • Fen Jiao
  • Wenqing Qin
Article
  • 22 Downloads

Abstract

This study investigated the sulfidation and sulfur fixation of jarosite residues during reduction roasting in the presence of carbon. The effects of roasting temperature and carbon dosage were investigated based on thermodynamic calculation. The results indicated that more than 98 pct of zinc contained in the residue was converted into zinc sulfides, and more than 91 pct of sulfur was fixed in the roasted residue. Carbon addition promoted not only the sulfidation of zinc but also the fixation of sulfur, thereby eliminating SO2 emission. The growth of sulfide particles was strongly influenced by roasting temperature. The size of sulfide particles significantly increased when the temperature was above 1173 K (900 °C) because of the formation of a liquid phase during the roasting process. However, high temperature could increase the consumption of carbon powder.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (Grant Nos. 51804342, 51874356, and 51604302), the Provincial Science and Technology Leader (Innovation Team of Interface Chemistry of Efficient and Clean Utilization of Complex Mineral Resources, Grant No. 2016RS2016), the Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources, the Innovation Driven Plan of Central South University (Grant No. 2015CX005), the Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources (Grant No. 2018TP1002), the Innovation Project for Postgraduates of Central South University (Grant No. 2018zzts792), and the Scientific Research Starting Foundation of Central South University (Grant No. 218041). The authors BZ and LZ contributed equally to this work.

References

  1. 1.
    E. Rudnik, G. Wloch, and L. Szatan: Miner. Metall. Proc., 2018, vol. 35, pp. 69–76.Google Scholar
  2. 2.
    M. John, S. Heuss-Assbichler, and A. Ullrich: Int. J. Environ. Sci. Technol., 2016, vol. 13, pp. 2127–34.CrossRefGoogle Scholar
  3. 3.
    S. Luis Suarez-Gomez, M. Luisa Sanchez, F. Blanco, J. Ayala, and F.J. de Cos Juez: J. Hazard. Mater., 2017, vol. 336, pp. 168–73.Google Scholar
  4. 4.
    M. Sethurajan, D. Huguenot, R. Jain, P.N.L. Lens, H.A. Horn, L.H.A. Figueiredo, and E.D. van Hullebusch: J. Hazard. Mater., 2017, vol. 324, pp. 71–82.CrossRefGoogle Scholar
  5. 5.
    J. Han, W. Liu, W. Qin, B. Peng, K. Yang, and Y. Zheng: J. Ind. Eng. Chem., 2015, vol. 22, pp. 272–79.CrossRefGoogle Scholar
  6. 6.
    J.C. Balarini, L.D.O. Polli, T.L. Santos Miranda, R.M. Zica De Castro, and A. Salum: Miner. Eng., 2008, vol. 21, pp. 100–10.Google Scholar
  7. 7.
    J. Han, W. Liu, W. Qin, K. Yang, D. Wang, and H. Luo: Sep. Purif. Technol., 2015, vol. 154, pp. 263–70.CrossRefGoogle Scholar
  8. 8.
    F. Zhang, C. Wei, Z. Deng, C. Li, X. Li, and M. Li: Trans. Nonferr. Met. Soc., 2016, vol. 26, pp. 2495–2501.CrossRefGoogle Scholar
  9. 9.
    M. Saravanan and T.C.S. Girisun: Appl. Surf. Sci., 2017, vol. 392, pp. 904–11.CrossRefGoogle Scholar
  10. 10.
    J. Han, W. Liu, W. Qin, Y. Zheng, and H. Luo: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 686–93.CrossRefGoogle Scholar
  11. 11.
    J. Gao, M. Zhang, F. Cheng, and M. Guo: Hydrometallurgy, 2017, vol. 173, pp. 98–105.CrossRefGoogle Scholar
  12. 12.
    M. Ye, P. Yan, S. Sun, D. Han, X. Xiao, L. Zheng, S. Huang, Y. Chen, and S. Zhuang: Chemosphere, 2017, vol. 168, pp. 1115–25.CrossRefGoogle Scholar
  13. 13.
    W. Liu, J.W. Han, W.Q. Qin, L.Y. Chai, D.K. Hou, and Y. Kong: Can. Metall. Q., 2014, vol. 53, pp. 176–82.CrossRefGoogle Scholar
  14. 14.
    X. Ren, Q. Wei, S. Hu, and S. Wei: J. Hazard. Mater., 2010, vol. 181, pp. 908–15.CrossRefGoogle Scholar
  15. 15.
    C. Su, W. Zhang, E. Ghali, and G. Houlachi: J. Appl. Electrochem., 2017, vol. 47, pp. 941–58.CrossRefGoogle Scholar
  16. 16.
    M. Gnanavel, V. Pralong, O.I. Lebedev, V. Caignaert, P. Bazin, and B. Raveau: Chem. Mater., 2014, vol. 26, pp. 4521–27.CrossRefGoogle Scholar
  17. 17.
    S. Ju, Y. Zhang, Y. Zhang, P. Xue, and Y. Wang: J. Hazard. Mater., 2011, vol. 192, pp. 554–58.CrossRefGoogle Scholar
  18. 18.
    A.A. Gonzalez-Ibarra, F. Nava-Alonso, A. Uribe-Salas, and E.N. Castillo-Ventureno: Can. Metall. Q., 2016, vol. 55, pp. 448–54.CrossRefGoogle Scholar
  19. 19.
    B. Nazari, E. Jorjani, H. Hani, Z. Manafi, and A. Riahi: Trans. Nonferr. Met. Soc., 2014, vol. 24, pp. 1152–60.CrossRefGoogle Scholar
  20. 20.
    H.E.A. Brand, N.V.Y. Scarlett, and I.E. Grey: J. Appl. Crystallogr., 2012, vol. 45, pp. 535–45.CrossRefGoogle Scholar
  21. 21.
    F. Chowdhury and T.V. Ojumu: Hydrometallurgy, 2014, vol. 141, pp. 36–42.CrossRefGoogle Scholar
  22. 22.
    H. Crabbe, N. Fernandez, and F. Jones: J. Cryst. Growth, 2015, vol. 416, pp. 28–33.CrossRefGoogle Scholar
  23. 23.
    I.A. Reyes, F. Patino, M.U. Flores, T. Pandiyan, R. Cruz, E.J. Gutierrez, M. Reyes, and V.H. Flores: Hydrometallurgy, 2017, vol. 167, pp. 16–29.CrossRefGoogle Scholar
  24. 24.
    M. Singh, V.J. Rajesh, K.S. Sajinkumar, K. Sajeev, and S.N. Kumar: Spectrochim. Acta, 2016, vol. 168, pp. 86–97.CrossRefGoogle Scholar
  25. 25.
    H. Spratt, L. Rintoul, M. Avdeev, and W. Martens: J. Therm. Anal. Calorim., 2014, vol. 115, pp. 101–09.CrossRefGoogle Scholar
  26. 26.
    A.L. Riley, S.E. Pepper, A.J. Canner, S.F. Brown, and M.D. Ogden: Sep. Sci. Technol., 2018, vol. 53, pp. 22–35.CrossRefGoogle Scholar
  27. 27.
    M. Kerolli-Mustafa, H. Fajkovic, S. Roncevic, and L. Curkovic: J. Geochem. Explor., 2015, vol. 148, pp. 161–68.CrossRefGoogle Scholar
  28. 28.
    H. Vu, J. Jandova, and T. Hron: Hydrometallurgy, 2010, vol. 101, pp. 1–06.CrossRefGoogle Scholar
  29. 29.
    S.K. Agarwal, A. Pahuja, M.M. Ali, B.K. Singh, and S. Duggal: Adv. Cem. Res., 2015, vol. 27, pp. 248–58.CrossRefGoogle Scholar
  30. 30.
    C. Liu, S.H. Ju, L.B. Zhang, C. Srinivasakannan, J.H. Peng, T.Q.X. Le, and Z.Y. Guo: Can. Metall. Q., 2017, vol. 56, pp. 1–9.CrossRefGoogle Scholar
  31. 31.
    H. Han, W. Sun, Y. Hu, B. Jia, and H. Tang: J. Hazard. Mater., 2014, vol. 278, pp. 49–54.CrossRefGoogle Scholar
  32. 32.
    P. Asokan, M. Saxena, and S.R. Asolekar: Mater. Charact., 2010, vol. 61, pp. 1342–55.CrossRefGoogle Scholar
  33. 33.
    J. Han, W. Liu, D. Wang, F. Jiao, and W. Qin: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 344–54.CrossRefGoogle Scholar
  34. 34.
    Y. Ke, L. Chai, X. Min, C. Tang, B. Zhou, J. Chen, and C. Yuan: Miner. Eng., 2015, vol. 74, pp. 68–78.CrossRefGoogle Scholar
  35. 35.
    Y. Ke, X. Min, L. Chai, B. Zhou, and K. Xue: Hydrometallurgy, 2016, vol. 161, pp. 166–73.CrossRefGoogle Scholar
  36. 36.
    J. Han, W. Liu, D. Wang, F. Jiao, T. Zhang, and W. Qin: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2400–10.CrossRefGoogle Scholar
  37. 37.
    S.V. Lakshman, S. Mohan, E.L. Dreizin, and M. Schoenitz: J. Therm. Anal. Calorim., 2014, vol. 115, pp. 609–20.CrossRefGoogle Scholar
  38. 38.
    H. Xu, Y. Zhao, S.C. Vogel, D.D. Hickmott, L.L. Daemen, and M.A. Hartl: Phys. Chem. Miner., 2010, vol. 37, pp. 73–82.CrossRefGoogle Scholar
  39. 39.
    W. Liu, J. Xu, J. Han, F. Jiao, W. Qin, and Z. Li: ACS Sustain. Chem. Eng., 2018.  https://doi.org/10.1021/acssuschemeng.8b03382
  40. 40.
    W. Liu, X. Zhong, J. Han, W. Qin, T. Liu, C. Zhao, and Z. Chang: ACS Sustain. Chem. Eng., 2018.  https://doi.org/10.1021/acssuschemeng.8b04939

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaP.R. China
  2. 2.Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral ResourcesCentral South UniversityChangshaP.R. China

Personalised recommendations