Study of Plume Eye in the Copper Bottom Blown Smelting Furnace

  • Xu Jiang
  • Zhixiang Cui
  • Mao ChenEmail author
  • Baojun Zhao


In the present study, the plume eye, which is a gas bubble plume generated by pushing away the upper layer liquid having a lower density and the exposure of the lower layer liquid which has a relatively higher density, was studied systematically in a bottom blown furnace model. A series of single lance experiments were carried out in a horizontal cylindrical furnace model to evaluate the effects of gas flowrate, lower layer thickness and upper layer thickness on the size of plume eye. The corresponding eye areas under different experimental conditions were measured. The results suggest that the eye size increases with increase of the gas flowrate and lower layer thickness. On the other hand, the eye size is reduced with increasing upper layer thickness. A mathematical model has been developed to predict the eye area in a horizontal cylindrical furnace by a single bottom blown lance.



Vessel radius (m)


Equivalent radius (m)


Central angle (rad)


Half of the length of the chord inside the sector in Figure 7 (m)


The area of the plume eye (m2)


Upper layer thickness (m)


Lower layer thickness (m)


Characteristic length (m)


Volumetric flowrate of gas (m3/s)


Gas velocity (m/s)

\( Fr^{\prime} \)

Modified Froude number


Liquid density (kg/ m3)


Gas density (kg/ m3)


Acceleration due to gravity (m/s2)


Rising plume velocity (m/s)


Dimensionless constant


Dimensionless constant


Density difference between upper phase and lower phase


Empirical constant


Empirical constant


Empirical constant


Kinematic viscosity of upper phase (m2/s)



The authors would like to thank National Copper Corporation of Chile (Codelco), Dongying Fangyuan Nonferrous Metals (Fangyuan) and Australia Research Council for financial support through the ARC Linkage program.


  1. 1.
    Subagyo Brooks , G.A., Irons, G.A.: ISIJ Int., 2003, vol. 43, pp. 262-63.CrossRefGoogle Scholar
  2. 2.
    S. Chatterjee and K. Chattopadhyay: ISIJ Int, 2015, vol. 55, pp. 1416-24.CrossRefGoogle Scholar
  3. 3.
    M. Iguchi, K. Miyamoto, S. Yamashita, D. Iguchi and M. Zeze: ISIJ int, 2004. vol. 44, pp. 636-38.CrossRefGoogle Scholar
  4. 4.
    K. Krishnapisharody and G.A. Irons: Metall. Trans. B, 2006, vol. 37, pp. 763-72.CrossRefGoogle Scholar
  5. 5.
    N. Lv, L. Wu, H. Wang, Y. Dong and C. Su: JISR Int, 2017, vol. 24, pp. 243-50.Google Scholar
  6. 6.
    D. Mazumdar and J. Evans: Metall. Trans. B, 2004, vol. 35, pp. 400-04.CrossRefGoogle Scholar
  7. 7.
    D. Mazumdar and J. Evans: ISIJ int, 2003, vol. 43, pp. 2076-78.CrossRefGoogle Scholar
  8. 8.
    M. Peranandhanthan and D. Mazumdar: ISIJ int, 2010, vol. 50, pp. 1622-31.CrossRefGoogle Scholar
  9. 9.
    L. Wu, P. Valentin and S. Du: SR int, 2010, vol. 81, pp. 508-15.Google Scholar
  10. 10.
    10.K. Yonezawa and K. Schwerdtfeger: Metall. Trans. B, 1999, vol. 30, pp. 411-18.CrossRefGoogle Scholar
  11. 11.
    K. Yonezawa and K. Schwerdtfeger: Metall. Trans. B, 1999, vol. 30, pp. 655-60.CrossRefGoogle Scholar
  12. 12.
    J. Han, H. Heo, D. Kam, B. You, J. Pak and H. Song: ISIJ int, 2001, vol. 41, pp. 1165-72.CrossRefGoogle Scholar
  13. 13.
    B. Li, H. Yin, C. Zhou and F. Tsukihashi: ISIJ int, 2008, vol. 48, pp. 1704-11.CrossRefGoogle Scholar
  14. 14.
    D. Mazumdar and R.I.L. Guthrie: Metall. Trans. B, 2010, vol. 41, pp. 976-89.CrossRefGoogle Scholar
  15. 15.
    K. Krishnapisharody and G. A. Irons: Metall. Mater. Trans. B, 2014, vol. 46, pp. 191.Google Scholar
  16. 16.
    D. Mazumdar: Metall. Mater. Trans. B, 2002, vol. 33, pp. 937-41.CrossRefGoogle Scholar
  17. 17.
    M. Iguchi, R. Tsujino, K. Nakamura and M. Sano: Metall. Trans. B, 1999, vol. 30, pp. 631-37.CrossRefGoogle Scholar
  18. 18.
    B. Zhao, Z. Cui, and Z. Wang: Int. Symp. High-Temp. Metall. Process., 4th ed., 2013. pp. 1–10.Google Scholar
  19. 19.
    J. Liow and N. Gray: Metall. Trans. B, 1996, vol. 27, pp. 633-46.CrossRefGoogle Scholar
  20. 20.
    L. Shui, Z. Cui, X. Ma, M. Akbar-Rhamdhani, A. Nguyen and B. Zhao, Metall. Trans. B, 2015, vol. 46, pp. 1218-25.CrossRefGoogle Scholar
  21. 21.
    M. Barati, C. Harris, S. Clark and K. Krishnapisharody: Carlos Díaz Symp. Pyro, 2007, vol. 3, pp. 519-35.Google Scholar
  22. 22.
    W.E. Forsythe: Smithsonian Physical Tables, 9th ed., Knovel, New York, 2003, p. 319.Google Scholar
  23. 23.
    M.E. Schlesinger, M.J. King, K.C. Sole and W.G. Davenport: Extractive metallurgy of copper, 4th ed., Elsevier Science Ltd. Kidlington, Oxford, 2002, pp. 112.Google Scholar
  24. 24.
    C.J. Su, J.M. Chou and S.H. Liu: Mater. Trans, 2010, vol. 51, pp. 1602-08.CrossRefGoogle Scholar
  25. 25.
    M. Zhu, T. Inomoto, I. Sawada, and T. Hsiao: ISIJ Int, 1995, vol. 35, pp. 472-79.CrossRefGoogle Scholar
  26. 26.
    J.P.T. Kapusta: JOM, 2017, vol. 69, pp. 970-79CrossRefGoogle Scholar
  27. 27.
    S. Kim and R.J. Fruehan: Metall. Trans. B, 1987, vol. 18, pp. 381-90CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.Dongying Fangyuan Nonferrous MetalsDongyingP.R. China

Personalised recommendations