Determination of Thermodynamic Properties of Si-B Alloys

  • Muhammad A. Imam
  • Jacob S. Young
  • Ramana G. ReddyEmail author


This study establishes the thermodynamic properties of the Si-B binary alloy system. The electromotive force (emf) as a function of temperature (823 K to 923 K) was measured using solid-state electrochemical cells, represented as
$$(-)\,{\text{Pt}},{\text{Ar}}/\{\text{Si}\|{\text{CaF}}_{2}\|\;\{{\text{Si}} - {\text{B}}({\text{alloy}})\}/{\text{Ar}},{\text{Pt}}( + )$$
Using the experimental emf data obtained from the solid-state heterogeneous phase equilibrium, the activities of Si and B in Si-B alloys were calculated. The integral Gibbs energy of mixing \( (\Delta G^{\text{M}} ) \) of alloys were calculated from the activity of Si and B. A large negative deviation from ideality was found for the integral Gibbs energy of mixing \( (\Delta G^{\text{M}} ) \) of the binary Si-B system. From the activities of Si and B, the Gibbs energies of formation \( \left( {\Delta G_f^{0 } } \right) \) of phases present were calculated. The \( \Delta G_{f}^{ 0 } \) of SiB3, the most thermodynamically stable phase, was calculated as − 13.13 ± 0.19 kJ/mole-atoms at 923 K. The heterogeneous phases and microstructure after the equilibrium study of the electrode were characterized using XRD, SEM, and EDS analyses.



The authors gratefully acknowledge the financial support, Grant No. DMR-1310072, of the National Science Foundation (NSF). The authors would also like to acknowledge the financial support from American Cast Iron Pipe Company (ACIPCO) and Department of Metallurgical and Materials Engineering at the University of Alabama.


  1. 1.
    B. I. Shklovskii and A. L. Efros: Electronic properties of doped semiconductors. Springer, New York (2013)Google Scholar
  2. 2.
    Y. Delannoy, Journal of Crystal Growth 2012, vol. 360, pp. 61-67.CrossRefGoogle Scholar
  3. 3.
    M. Mukaida, T. Goto and T. Hirai, Material and Manufacturing Process 1992, vol. 7, pp. 625-647.CrossRefGoogle Scholar
  4. 4.
    L. Chen, T. Goto, J. Li and T. Hirai, Materials Transactions, JIM 1996, vol. 37, pp. 1182-1185.CrossRefGoogle Scholar
  5. 5.
    L. Chen, T. Goto, J. Li, E. Aoyagi and T. Hirai, Thermoelectrics, 1997. Proceedings ICT ‘97. XVI International Conference on 1997, pp. 215–18.Google Scholar
  6. 6.
    J. Li, T. Goto and T. Hirai, Materials Transactions, JIM 1999, vol. 40, pp. 314-319.CrossRefGoogle Scholar
  7. 7.
    N. Takashima, Y.Azuma and J. I. Matsushita, MRS Proceedings 1999, vol. 604, p. 233.CrossRefGoogle Scholar
  8. 8.
    T. Nakayama, J. Shimizu and K. Kimura, Journal of Solid State Chemistry 2000, vol. 154, pp. 13-19.CrossRefGoogle Scholar
  9. 9.
    M. Mukaida, T. Tsunoda, M. Ueda, and Y. Imai, Proceedings of XX International Conference on Thermoelectrics 2001, pp. 225–28.Google Scholar
  10. 10.
    J. O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Calphad 2002, vol. 26, pp. 273-312.CrossRefGoogle Scholar
  11. 11.
    A. I. Zaitsev and A. A. Kodentsov, Journal of Phase Equilibria 2001, vol. 22, pp. 126-135.CrossRefGoogle Scholar
  12. 12.
    R. W. Olesinski and G. J. Abbaschian, Bulletin of Alloy Phase Diagrams 1984, vol. 5, pp. 478-484.CrossRefGoogle Scholar
  13. 13.
    M. A. Imam and R. G. Reddy, High Temperature Materials and Processes 2018, doi: 10.1515/htmp-2018-0077.Google Scholar
  14. 14.
    Y.O. Esin, S.P. Kolesnikov, B.M. Baev and A.F. Ermakov, Journal of Structure Properties of Metallurgical Slag and Melts 1978, vol. 3, pp. 182-183.Google Scholar
  15. 15.
    R. Noguchi, K. Suzuki, F. Tsukihashi, N. Sano, Metallurgical and Materials Transactions B 1994, vol. 25, pp. 903-907.CrossRefGoogle Scholar
  16. 16.
    J. Wu, W. Ma, D. Tang, B. Jia, B. Yang, D. Liu, Y. Dai, Procedia Engineering 2012, vol. 31, pp. 297-301.CrossRefGoogle Scholar
  17. 17.
    B. Armas, C. Combescure, G. Male, M. Morales, Journal of the Less Common Metals 1979, vol. 67, pp. 449-453.CrossRefGoogle Scholar
  18. 18.
    N. A. Arutyunyan, A. I. Zaitsev and N. G. Shaposhnikov, Russian Journal of Physical Chemistry A 2012, vol. 86, pp. 339-341.CrossRefGoogle Scholar
  19. 19.
    R. R. Dirkx and K. E. Spear, Calphad 1987, vol. 11, pp. 167-175.CrossRefGoogle Scholar
  20. 20.
    L. Kaufman, B. Uhrenius, D. Birnie, K. Taylor, Calphad 1984, vol. 8, pp. 25-66.CrossRefGoogle Scholar
  21. 21.
    B. Armas, G. Male, D. Salanoubat, C. Chatillon and M. Allibert, Journal of the Less Common Metals 1981, vol. 82, pp. 245-254.CrossRefGoogle Scholar
  22. 22.
    S. P. Gordienko, Powder Metallurgy and Metal Ceramics 1996, vol. 34, pp. 660-662.CrossRefGoogle Scholar
  23. 23.
    T. Chubinidze, Izv. Akad. Nauk SSSR, Met. 1982, pp. 199–201.Google Scholar
  24. 24.
    N. I. Sorokin and B. P. Sobolev, Crystallography reports 2007, vol. 52, pp. 842-863.CrossRefGoogle Scholar
  25. 25.
    J. Delcet, R. J. Heus and J. J. Egan, Journal of The Electrochemical Society 1978, vol. 125, pp. 755-758.CrossRefGoogle Scholar
  26. 26.
    H. Kim, D.A. Boysen, D.J. Bradwell, B. Chung, K. Jiang, A.A. Tomaszowska, K. Wang, W. Wei, D.R. Sadoway, Electrochimica Acta 2012, vol. 60, pp. 154-162.CrossRefGoogle Scholar
  27. 27.
    S. Poizeau, H. Kim, J.M. Newhouse, B.L. Spatocco, D.R. Sadoway, Electrochimica Acta 2012, vol. 76, pp. 8-15.CrossRefGoogle Scholar
  28. 28.
    J.M. Newhouse, S. Poizeau, H. Kim, B.L. Spatocco, D.R. Sadoway Electrochimica Acta 2013, vol. 91, pp. 293-301.CrossRefGoogle Scholar
  29. 29.
    N.D. Smith, T. Lichtenstein, J. Gesualdi, K. Kumar, H. Kim, Electrochimica Acta 2017, vol. 225, pp. 584-591.CrossRefGoogle Scholar
  30. 30.
    S. C. Parida and R.G. Reddy, The Journal of Chemical Thermodynamics 2007, vol. 39, pp. 888-892.CrossRefGoogle Scholar
  31. 31.
    R.G. Reddy, A. M. Yahya and L. Brewer, Journal of alloys and compounds 2001, vol. 321, pp. 223-227.CrossRefGoogle Scholar
  32. 32.
    P. George, S. C. Parida and R. G. Reddy, Metallurgical and Materials Transactions B, 2007, vol. 38, pp. 85-91.CrossRefGoogle Scholar
  33. 33.
    S.G. Kumar, R.G. Reddy and L. Brewer, Journal of phase equilibria 1994, vol. 15, pp. 279-284.CrossRefGoogle Scholar
  34. 34.
    M.A. Imam and R.G. Reddy, Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies, Springer, Cham, Switzerland, 2017, pp 457-464.CrossRefGoogle Scholar
  35. 35.
    M.A. Imam, R.G. Reddy, Metallurgical and Materials Transactions B, 2018, vol.49, pp. 3504–3512.CrossRefGoogle Scholar
  36. 36.
    C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, R. Mahfoud, J. Melançon, A. D. Pelton and S. Petersen, Calphad 2002, 26, 189-228.CrossRefGoogle Scholar
  37. 37.
    R. Giese, J. Economy, and Matkovich V.I., In Zeitschrift für Kristallographie, (1965), p 144.Google Scholar
  38. 38.
    M. Imai, T. Kimura, K. Sato, T. Hirano, Journal of Alloys and Compounds 2000, vol. 306, pp. 197-202.CrossRefGoogle Scholar
  39. 39.
    M. Vlasse and J. C. Viala, Journal of Solid State Chemistry 1981, vol. 37, pp. 181-188.CrossRefGoogle Scholar
  40. 40.
    P. Franke and D. Neuschütz, In Binary systems. Part 2: Elements and Binary Systems from B – C to Cr – Zr: Phase Diagrams, Phase Transition Data, Integral and Partial Quantities of Alloys, ed. P. Franke and Neuschütz D. (Springer Berlin Heidelberg: Berlin, 2004), pp 1–4.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringThe University of AlabamaTuscaloosaUSA

Personalised recommendations