Characterization of Oxide + TiN Inclusions in Fe-16 Mass Pct Cr Ferritic Alloy Using Automatic SEM-EDS Analysis

  • Minggang Li
  • Hiroyuki Matsuura
  • Fumitaka TsukihashiEmail author


The assessment of automatic SEM-EDS results is significant to reveal the possible inaccuracy of the results and the limitation of this characterization technique in analyzing inclusions. In current research, the oxide + TiN inclusion in Fe-16 mass pct Cr ferritic alloy is characterized by emphasizing the effects of Mg addition and N content on the composition, morphology, homogeneity of dispersion, and size distribution of inclusions; the assessment of automatic SEM-EDS results in rapid analysis concerning its limitation and the utilization of its advantage to clarify the formation mechanism of inclusions are conducted. The nature of inclusions is revealed. Mg addition makes the number density of inclusions larger and the size of inclusions finer. The effect of N content on the size of oxde + TiN was not obvious. Automatic SEM-EDS analysis is deficient in detecting light elements and low content elements in the inclusions and distinguishing between TiN and oxide + TiN. Optimizing the experimental design and combining automatic SEM-EDS results with manual SEM-EDS and optical microscopy results can contribute to delivering accurate and speedy results.



The authors are grateful to Professor Xiaojun Hu and Technician Dr. Huijing Cheng of the State Key Laboratory of Advanced Metallurgy of the University of Science and Technology of Beijing for assistance on automatic SEM-EDS analysis.


  1. 1.
    M. Fernandes, J. Pires, N. Cheung, A. Garcia: Mater. Charact., 2003, vol. 51, pp. 301-308.CrossRefGoogle Scholar
  2. 2.
    L. Zhang, B. G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-291.CrossRefGoogle Scholar
  3. 3.
    L. Zhang, S. Wang, A. Dong, J. Gao, L. N. W. Damoah: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2153-2185.CrossRefGoogle Scholar
  4. 4.
    J. H. Park, H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333-1346.CrossRefGoogle Scholar
  5. 5.
    J. Gregg, H. Bhadeshia: Acta Mater., 1997, vol. 45, pp. 739-748.CrossRefGoogle Scholar
  6. 6.
    J. -H. Shim, Y. Cho, S. Chung, J. -D. Shim, D. Lee: Acta Mater., 1999, vol. 47, pp. 2751-2760.CrossRefGoogle Scholar
  7. 7.
    J. -H. Shim, Y. -J. Oh, J. -Y. Suh, Y. Cho, J. -D. Shim, J. -S. Byun, D. Lee: Acta Mater., 2001, vol. 49, pp. 2115-2122.CrossRefGoogle Scholar
  8. 8.
    M. Jiang, X. H. Wang, Z. Y. Hu, K. P. Wang, C. W. Yang, S. R. Li: Mater. Charact., 2015, vol. 108, pp. 58-67.CrossRefGoogle Scholar
  9. 9.
    H. Fujimura, S. Tsuge, Y. Komizo, T. Nishizawa: Tetsu-to-Hagané, 2001, vol. 87, pp. 707-712.CrossRefGoogle Scholar
  10. 10.
    S. Imashuku, K. Ono, R. Shishido, S. Suzuki, K. Wagatsuma: Mater. Charact., 2017, vol. 131, pp. 310-216.CrossRefGoogle Scholar
  11. 11.
    P. Kaushik, H. Pielet, H. Yin: Ironmaking Steelmaking, 2009, vol. 36, pp. 572-582.CrossRefGoogle Scholar
  12. 12.
    M. Goransson, F. Reinholdsson, K. Willman: Iron Steelmaker, 1999, vol. 26, pp. 53-58.CrossRefGoogle Scholar
  13. 13.
    M. Nuspl, W. Wegscheider, J. Angeli, W. Posch, M. Mayr: Analytical and Bioanalytical Chemistry, 2004, vol. 379, pp. 640-645.CrossRefGoogle Scholar
  14. 14.
    G. Gigacher, W. Krieger, P. R. Scheller, C. Thomser: Steel Res., 2005, vol. 76, pp. 644-649.CrossRefGoogle Scholar
  15. 15.
    S. K. Michelic, D. Loder, T. Reip, A. A. Barani, C. Bernhard: Mater. Charact., 2015, vol. 100, pp. 61-67.CrossRefGoogle Scholar
  16. 16.
    K. Kimura, A. Takahashi: Nippon Steel Tech. Rep., 2010, vol. 99, pp. 51-55.Google Scholar
  17. 17.
    K. Kimura, S. Fukumoto, G. Shigesato, A. Takahashi: ISIJ Int., 2013, vol. 53, pp. 2167-2175.CrossRefGoogle Scholar
  18. 18.
    M. Li, H. Matsuura, F. Tsukihashi: Mater. Charact., 2018, vol. 136, pp. 358-366.CrossRefGoogle Scholar
  19. 19.
    R. Inoue: Report of Recent, Progress on Ultraclean Steel, 1999, pp. 330, 341 and 348.Google Scholar
  20. 20.
    S. Matsuda, N. Okumura: Tetsu-to-Hagané, 1976, vol. 62, pp. 1209-1218.CrossRefGoogle Scholar
  21. 21.
    L. Wang, S. Yang, J. Li, S. Zhang, J. Ju: Metall. Mater. Trans. B, 2017, vol. 48, pp. 805-818.CrossRefGoogle Scholar
  22. 22.
    ASM: Phase Diagrams for Binary Alloys: ASM International, America, 2000, p. 266.Google Scholar
  23. 23.
    T. Zhang, C. Liu, M. Jiang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2253-2262.CrossRefGoogle Scholar
  24. 24.
    S. K. Michelic, G. W. Wieser, C. Bernhard: ISIJ Int., 2011, vol. 51, pp. 769-775.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Minggang Li
    • 1
  • Hiroyuki Matsuura
    • 1
    • 2
  • Fumitaka Tsukihashi
    • 1
    Email author
  1. 1.Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
  2. 2.Graduate School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations