The Structure Evolution Mechanism of Ni Films Depending on Hydrogen Evolution Property During Electrodeposition Process

  • Xiangtao Yu
  • Zhangfu YuanEmail author
Topical Collection: 2019 Metallurgical Processes Workshop for Young Scholars
Part of the following topical collections:
  1. International Metallurgical Processes Workshop for Young Scholars (IMPROWYS 2019)
  2. International Metallurgical Processes Workshop for Young Scholars (IMPROWYS 2019)


Hydrogen evolution property is an important factor to regulate the surface structure of the electrodeposited Ni film. In this work, the dependence of current density on hydrogen evolution property is researched. The structure evolution mechanism of the Ni film depending on current density is analyzed in terms of the hydrogen evolution characteristic. It is found that the surface structure of the Ni film from compact to porous structure could be achieved by adjusting the electrodeposition current density. At low current density (less than 0.07 A cm−2), the current efficient of hydrogen evolution is very weak. Ni electrodeposition is the main reaction, so compact Ni film is formed. At high current density (higher than 0.3 A cm−2), hydrogen evolution reaction is enhanced with the increase of current density. At this time, there are plenty of bubbles which can act as templates. As a result, porous Ni film is electrodeposited. However, when the current density is lower than 0.7 A cm−2, dish-like pore with large diameter is formed due to the large break-off diameter and the long resident time of the hydrogen bubble. And honeycomb-like pore with small diameter is formed at current density larger than 1 A cm−2, because of reduced break-off diameter and resident time of the hydrogen bubble. Porous film with uniform structure is electrodeposited at 1 A cm−2, which possesses the higher catalytic activity for hydrogen evolution.



This work is supported by the Natural Science Foundation of China (51804023) and Fundamental Research Funds for the Central Universities (FRF-TP-18-007A1).


  1. 1.
    M. Fang, G. Dong, R. Wei, and J. Ho: Adv. Energy Mater., 2017, vol. 7, art. no. 1700559.Google Scholar
  2. 2.
    M. Wang, X. Yu, Z. Wang, X. Gong, and Z. Guo: J. Mater. Chem. A, 2017, vol. 5, pp. 9488-9513.CrossRefGoogle Scholar
  3. 3.
    X. Xing, S. Cherevko, and C.H. Chung: Mater. Chem. Phys., 2011, vol. 126, pp. 36-40.CrossRefGoogle Scholar
  4. 4.
    B.J. Plowman, L.A. Jones, and S.K. Bhargava: Chem. Commun. 2015, vol. 51 pp. 4331-4346.CrossRefGoogle Scholar
  5. 5.
    S. Cherevko, and C.H. Chung: Electrochem. Commun., 2011, vol. 13, pp. 16-19.CrossRefGoogle Scholar
  6. 6.
    S. Cherevko, X. Xing, and C.H. Chung: Appl. Surf. Sci., 2011, vol. 257, pp. 8054-8061.CrossRefGoogle Scholar
  7. 7.
    S. Cherevko, and C.H. Chung: Electrochim. Acta, 2010, vol. 55, pp. 6383-6390.CrossRefGoogle Scholar
  8. 8.
    S. Cherevko, N. Kulyk, and C.H. Chung: Langmuir, 2012, vol. 28, pp. 3306–3315.CrossRefGoogle Scholar
  9. 9.
    E.P. Barbano, I.A. Carlos, and E. Vallés: Surf. Coat.Technol., 2017, vol. 324, pp. 80-84.CrossRefGoogle Scholar
  10. 10.
    X. Yu, M. Wang, Z. Wang, X. Gong, and Z. Guo: J. Phys. Chem. C, 2017, vol. 121, pp. 16792-16802.CrossRefGoogle Scholar
  11. 11.
    X. Yu, M. Wang, Z. Wang, X. Gong, and Z. Guo: Appl. Surf. Sci., 2016, vol. 360, pp. 502-509.CrossRefGoogle Scholar
  12. 12.
    W. Tsai, P. Hsu, Y. Hwu, C. Chen, L. Chang, J. Je, H. Lin, A. Groso, and G. Margaritondo: Nature, 2002, vol. 417, pp. 139-139.CrossRefGoogle Scholar
  13. 13.
    N.D. Nikolic, K.I. Popov, L.J. Pavlovic, and M.G. Pavlovic: Surf. Coat.Technol., 2006, vol. 201, pp. 560-566.CrossRefGoogle Scholar
  14. 14.
    H. Zhang, Y. Ye, R. Shen, C. Ru, and Y. Hu: J. Electrochem. Soc., 2013, vol. 160, pp. D441-D445.CrossRefGoogle Scholar
  15. 15.
    H.C. Shin, and M.L. Liu: Chem. Mater., 2004, vol. 16, pp. 5460-5464.CrossRefGoogle Scholar
  16. 16.
    R. Kim, D. Han, D. Nam, J. Kim, and H. Kwon: Jpn. J. Microbiol., 2010, vol. 1, pp. 1-9.Google Scholar
  17. 17.
    L. Rafailović, C. Gammer, C. Rentenberger, C. Kleber, A. Whitehead, B. Gollas, and H. Karnthaler: Phys. Chem. Chem. Phys. 2012, vol. 14, pp. 972-980.CrossRefGoogle Scholar
  18. 18.
    C. Srivastava, S.K. Ghosha, S. Rajak, A.K. Sahu, R. Tewari, V. Kaina, and G.K. Dey: Surf. Coat.Technol., 2017, vol. 313, pp. 8-16.CrossRefGoogle Scholar
  19. 19.
    I. Matsui, N. Omura, T. Yamamoto, and Y. Takigawa: Surf. Coat.Technol., 2018, vol. 337, pp. 411-417.CrossRefGoogle Scholar
  20. 20.
    M. Wang, Z. Wang, X. Yu, X. Gong, and Z. Guo: Int. J. Hydrogen Energy, 2015, vol. 40, pp. 2173-2181.CrossRefGoogle Scholar
  21. 21.
    C. Cheng, T. Yeh, M. Tsai, H. Chou, H.Wu, and C. Hsieh: Surf. Coat.Technol., 2017, vol. 324, pp. 80-84.CrossRefGoogle Scholar
  22. 22.
    Z. Q. Cui, Principles of Metallography and heat treatment, Harbin Institute of Technology Press, Harbin, 2008.Google Scholar
  23. 23.
    I. Najdovski, and A. O’Mullane: Electroanal. Chem., 2014, vol. 722-723, pp. 95-101.CrossRefGoogle Scholar
  24. 24.
    X. Chen, L. Kong, D. Dong, G. Yang, L. Yu, J. Chenand, and P. Zhang: J. Phys. Chem. C, 2009, vol. 113, pp. 5396-5401.CrossRefGoogle Scholar
  25. 25.
    H.Y. Jiang, Metallurgical Electrochemistry, Metallurgical Industry Press, Beijing, 1983.Google Scholar
  26. 26.
    X. Yu, M. Wang, Z. Wang, X. Gong, and Z. Guo: Electrochim. Acta, 2016, vol. 211, pp. 900-910.CrossRefGoogle Scholar
  27. 27.
    C. Gonzalez-Buch, I. Herraiz-Cardona, E. Ortega, J. Garcia-Anton, and V. Perez-Herranz: Int. J. Hydrogen Energy, 2013, vol. 38, pp. 10157-10169.CrossRefGoogle Scholar
  28. 28.
    B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani: Electrochim. Acta, 2010, vol. 55, pp. 6218-6227.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Collaborative Innovation Center for Steel TechnologyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations