Advertisement

Effect of Thermoelectric Magnetic Convection on Shrinkage Porosity at the Final Stage of Solidification of GCr18Mo Steel Under Axial Static Magnetic Field

  • Yuan Hou
  • Sansan Shuai
  • Yuanhao Dong
  • Weidong Xuan
  • Jiang WangEmail author
  • Zhenqiang Zhang
  • Xingfu Ren
  • Zhongming RenEmail author
Article
  • 8 Downloads

Abstract

Adopting effective strategies to eliminate the shrinkage porosity at the final stage of steel solidification is one of the most attractive research subjects for metallurgists. Despite the progress in understanding the thermoelectric magnetic convection (TEMC) in the solidification process, utilization of TEMC for modifying the solidification feeding of steel has been ignored. The effects of TEMC on the shrinkage porosity at the final stage of solidification of GCr18Mo steel were investigated under an axial static magnetic field (ASMF). The morphology and porosity of GCr18Mo steel were investigated quantitatively by X-ray microtomography. We found that the amount of porosity first decreases and then increases with increasing intensity of the ASMF. Meanwhile, the shape of the porosity changed from tortuous to elliptic under the ASMF. On the basis of both the experimental and simulated results, the decrease in porosity is attributed to an adequate development of the TEMC leading to sufficient feeding. This study sheds light on an alternative technique for eliminating the shrinkage porosity at the final stage of steel solidification in industrial applications.

Notes

Acknowledgments

This work was financially supported by the Joint Funds of the National Natural Science Foundation of China (Nos. U1560202, 51604171, and 51690162), the Shanghai Municipal Science and Technology Commission Grant (No. 17JC1400602), and the Project of the Ministry of Science and Technology of China (2017YFB0405902).

References

  1. 1.
    H.K.D.H. Bhadeshia: Prog. Mater. Sci., vol. 57, 2012, pp. 268-435.CrossRefGoogle Scholar
  2. 2.
    M.C. Flemings: Solidification Processing, 1st ed., McGraw-Hill, New York, 1974, p. 241-244.Google Scholar
  3. 3.
    R. A. Hardin and C. Beckermann: Metall. Mater. Trans. A, 2007, vol. 38, pp. 2992-3006.CrossRefGoogle Scholar
  4. 4.
    Y. Li, L. Li, and J. Zhang: Steel Res. Int., 2017, vol. 88, pp. 1700176.Google Scholar
  5. 5.
    Q. Dong, J. Zhang, B. Wang, and X. Zhao: J Mater. Process. Tech., 2016, vol. 238, pp. 81-88.CrossRefGoogle Scholar
  6. 6.
    J. Li, B. Wang, Y. Ma and J. Cui: Mater. Sci. Eng. A, 2006, vol. 425, pp. 201-204.CrossRefGoogle Scholar
  7. 7.
    J. Zeng, W. Chen, S. Zhang, Y. Li and Q. Wang: ISIJ Int., 2015, vol. 55, pp. 2142-2149.CrossRefGoogle Scholar
  8. 8.
    H. Kabbaj, X. Roboam, Y. Lefevre and J. Faucher: IEEE Int. Symp., 1997, vol. 2, pp. 532-536.Google Scholar
  9. 9.
    H. Harada, T. Toh, T. Ishii, K. Kaneko and E. Takeuchi: ISIJ Int., 2001, vol. 10, pp. 1236-1244.CrossRefGoogle Scholar
  10. 10.
    M. Nakada, K. Mori, S. Nishioka, K. Tsutsumi, H. Murakami and Y. Tsuchida: ISIJ Int., 1997, vol. 37, pp. 358-364.CrossRefGoogle Scholar
  11. 11.
    X. Li, A. Gagnoud, Z. Ren, Y. Fautrelle and R. Moreau: Acta Mater., 2009, vol. 57, pp. 2180-2197.CrossRefGoogle Scholar
  12. 12.
    X. Li, Y. Fautrelle, K. Zaidat, A. Gagnoud, Z. Ren, R. Moreau, Y. Zhang and C. Esling: J. Cryst. Growth, 2010, vol. 312, pp. 267-272.CrossRefGoogle Scholar
  13. 13.
    X. Li, Z. Ren, Y. Shen and Y. Fautrelle: Phil. Mag. Lett., 2012, vol. 92, pp. 675-682.CrossRefGoogle Scholar
  14. 14.
    X. Li, A. Gagnoud, Y. Fautrelle, Z. Ren, R. Moreau, Y.D. Zhang and C. Esling: Acta Mater., 2012, vol. 60, pp. 3321-3332.CrossRefGoogle Scholar
  15. 15.
    J. Yu, D. Du, Z. Ren, Y. Fautrelle, R. Moreau and X. Li: ISIJ Int., 2017, vol. 57, pp. 337-342.CrossRefGoogle Scholar
  16. 16.
    S. Hu, Y. Dai, A. Gagnoud, Y. Fautrelle, R. Moreau, Z. Ren, K. Deng, C. Li and X. Li: J. Alloys Compd., 2018, vol. 722, 108-115.CrossRefGoogle Scholar
  17. 17.
    Y. Hou, Z. Zhang, W. Xuan, J. Wang, J. Yu and Z. Ren: Acta Metall. Sin.-Engl., 2018, vol. 31, pp. 681-691.CrossRefGoogle Scholar
  18. 18.
    D. Kammer and P. W. Voorhees: Acta Mater., 2006, vol. 54, pp. 1549-1558.CrossRefGoogle Scholar
  19. 19.
    M. Felberbaum and M. Rappaz: Acta Mater., 2011, vol. 59, 6849-6860.CrossRefGoogle Scholar
  20. 20.
    F. Baltaretu, J. Wang, S. Letout, Z. Ren, X. Li, O. Budenkova and Y. Fautrelle: Magnetohydrodynamics, 2015, vol. 51, pp. 45-56.CrossRefGoogle Scholar
  21. 21.
    W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, (1992), pp. 80-84.Google Scholar
  22. 22.
    J. Wang, Y. Fautrelle, H. Nguyen-Thi, G. Reinhart, H. Liao, X. Li, Y. Zhong and Z. Ren: Metall. Mater. Trans. A, 2015, vol. 47, pp. 1-11.Google Scholar
  23. 23.
    J.E. Enderby and B.C. Dupree: Philos. Mag., 1977, vol. 35, pp. 791-793.CrossRefGoogle Scholar
  24. 24.
    S. Taniguchi and J.K. Brimacombe: ISIJ Int., 1994,vol. 34, pp. 722-731.CrossRefGoogle Scholar
  25. 25.
    W. Wang, S. Luo and M. Zhu: Comp. Mater. Sci., 2014, vol. 95, pp. 136-148.CrossRefGoogle Scholar
  26. 26.
    X. Li, Y. Fautrelle and Z. Ren: Acta Mater., 2007, vol. 55, pp. 3803-3813.CrossRefGoogle Scholar
  27. 27.
    H. Liu, W. Xuan, X. Xie, C. Li, J. Wang, J. Yu, X. Li, Y. Zhong and Z. Ren: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4193-4203.CrossRefGoogle Scholar
  28. 28.
    Z. Lu, Z. Ren, Y. Fautrelle and X. Li: ISIJ Int., 2018, vol. 58, pp. 505-514.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Yuan Hou
    • 1
  • Sansan Shuai
    • 1
  • Yuanhao Dong
    • 1
  • Weidong Xuan
    • 1
  • Jiang Wang
    • 1
    Email author
  • Zhenqiang Zhang
    • 1
  • Xingfu Ren
    • 1
  • Zhongming Ren
    • 1
    Email author
  1. 1.State Key Laboratory of Advanced Special Steel & School of Materials Science and EngineeringShanghai UniversityShanghaiChina

Personalised recommendations