Inclusion Characterization and Formation Mechanisms in Spring Steel Deoxidized by Silicon

  • Sha LyuEmail author
  • Xiaodong Ma
  • Zongze Huang
  • Zan Yao
  • Hae-Geon Lee
  • Zhouhua Jiang
  • Geoff Wang
  • Jin Zou
  • Baojun Zhao


To elucidate the mechanism of formation of inclusions in microalloyed spring steel deoxidized by Si, their number, morphology, and chemical compositions were analyzed by electron probe X-ray microanalysis. Wavelength-dispersive spectrometry and Monte Carlo simulation were used to confirm the existence of inherent FeO in the inclusions. Additions of Nb and V did not have an observable influence on the formation of inclusions. Based on the major chemical compositions, the inclusions in spring steel were classified into four types: CaO-SiO2, Al2O3-SiO2, Al2O3-SiO2-CaO, and MnS. Most CaO-SiO2 inclusions were around 10 μm in diameter, with their composition close to that of the refining slag and liquidus temperatures all below 1400 °C. The Al2O3-SiO2 inclusions were mainly attributed to deoxidization products. They were usually multiphased with liquidus temperatures higher than 1500 °C and smaller than 10 μm in diameter. Most Al2O3-SiO2-CaO inclusions with high Al2O3 and SiO2 contents originated from the coalescence of CaO-SiO2 and Al2O3-SiO2 inclusions; those with high CaO and SiO2 contents were considered to form via reduction of CaO-SiO2 inclusions by Al dissolved in the steel.



This work was supported by the Australian Research Council and Baosteel Australia Research and Development Centre. The University of Queensland International Research Tuition Award and China Scholarship Council provided scholarships for Mr Sha Lyu. The Australian Microscopy & Microanalysis Research Facility is thanked for providing characterization facilities. Technical supports for the EPMA facility from Mr. Ron Rasch and Ms. Ying Yu of the Centre for Microscopy and Microanalysis at the University of Queensland are gratefully acknowledged. We thank Kathryn Sole, PhD, from Edanz Group ( for editing a draft of this manuscript.


  1. 1.
    Q.Y. Wang, J.Y. Berard, S. Rathery and C. Bathias: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 673-7.CrossRefGoogle Scholar
  2. 2.
    D. McClaflin and A. Fatemi: Int. J. Fatigue, 2004, vol. 26, pp. 773-84.CrossRefGoogle Scholar
  3. 3.
    G. Farrahi, J. Lebrijn and D. Couratin: Fatigue Fract. Eng. Mater. Struct., 1995, vol. 18, pp. 211-20.CrossRefGoogle Scholar
  4. 4.
    B. Pyttel, D. Schwerdt and C. Berger: Int. J. Fatigue, 2011, vol. 33, pp. 49-58.CrossRefGoogle Scholar
  5. 5.
    P. Ganesh, R. Sundar, H. Kumar, R. Kaul, K. Ranganathan, P. Hedaoo, G. Raghavendra, S.A. Kumar, P. Tiwari, D.C. Nagpure, K.S. Bindra, L.M. Kukreja and S.M. Oak: Mater. Des., 2014, vol. 54, pp. 734-41.CrossRefGoogle Scholar
  6. 6.
    H. Tashiro, S. Nishida, T. Tarui, S. Ohashi, S. Sasaki and K. Nakamura, A. Yoshie and H. Demachi: Nippon Steel Technical Report, 1999, vol. 80, pp. 4-5.Google Scholar
  7. 7.
    M. Kimura: Research and Development Kobe, 2006, vol. 56, p. 1.Google Scholar
  8. 8.
    C.W. Anderson and S.G. Coles: Extremes, 2002, vol. 5, pp. 237-52.CrossRefGoogle Scholar
  9. 9.
    Y. Murakam, T. Nomoto and T. Ueda: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 581-90.CrossRefGoogle Scholar
  10. 10.
    Y. Murakami: JSME Int. J. Ser. A, 1989, vol. 32, pp. 167–80.Google Scholar
  11. 11.
    Y. Akiniwa, S.S. Tschegg, H. Mayer, M. Wakita and K. Tanaka: Int. J. Fatigue, 2008, vol. 30, pp. 2057-63.CrossRefGoogle Scholar
  12. 12.
    Y. Akiniwa, S.S. Tschegg and S. Konuma: Int. J. Fatigue, 1989, vol. 11, pp. 291-8.CrossRefGoogle Scholar
  13. 13.
    J. Zhang, S. Li, Z. Yang, G. Li, W. Hui and Y. Weng: Int. J. Fatigue, 2007, vol. 29, pp. 765-71.CrossRefGoogle Scholar
  14. 14.
    Z. Yang, J. Zhang, S. Li, G. Li, Q. Wang, W. Hui and Y. Weng: Mater. Sci. Eng. A, 2006, vol. 427, pp. 167-74.CrossRefGoogle Scholar
  15. 15.
    W.J. Hui, H. Dong and S.L. Chen: Special Steel, 1998, vol. 6, p. 1.Google Scholar
  16. 16.
    J. Kawahara, K. Tanabe, T. Banno and M. Yoshida: Wire J. Int. (USA), 1992, vol. 25, pp. 55-61.Google Scholar
  17. 17.
    Z. Yang, G. Yao, G. Li, S. Li, Z. Chu, W. Hui, H. Dong and Y. Weng: Int. J. Fatigue, 2004, vol. 26, pp. 959-66.CrossRefGoogle Scholar
  18. 18.
    H. Tozawa, Y. Kato, K. Sorimachi and T. Nakanishi: ISIJ Int., 1999, vol. 39, pp. 426-34.CrossRefGoogle Scholar
  19. 19.
    R. Tsujino, K. Mukai, W. Yamada, M. Zeze and S. Mizoguchi: Tetsu-to-Hagané, 1999, vol. 85, pp. 362-7.CrossRefGoogle Scholar
  20. 20.
    H. Ohta and H. Suito: ISIJ Int., 1996, vol. 36, pp. 983-90.CrossRefGoogle Scholar
  21. 21.
    K. Lee, J.M. Park, J.Y. Chung, S.H. Choi and S.B. Ahn: Rev. Métall., 1996, vol. 93, pp. 503-9.CrossRefGoogle Scholar
  22. 22.
    J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333-46.CrossRefGoogle Scholar
  23. 23.
    K. Beskow, J. Jia, C. Lupis and S.C. Du: Ironmak. Steelmak., 2002, vol. 29, pp. 427-35.CrossRefGoogle Scholar
  24. 24.
    V. Brabie: Steel Res. Int., 1997, vol. 68, pp. 54-60.CrossRefGoogle Scholar
  25. 25.
    V. Brabie: ISIJ Int., 1996, vol. 36, pp. S109-12.CrossRefGoogle Scholar
  26. 26.
    H. Yang, J. Ye, X. Wu, Y. Peng, Y. Fang and X. Zhao: ISIJ Int., 2016, vol. 56, pp. 108-15.CrossRefGoogle Scholar
  27. 27.
    J.T. Ju, Z.L. Lv and S.F. Yang: Met. Min. Ind., 2014, vol. 6, pp. 18-24.Google Scholar
  28. 28.
    K.Y. Lee, J.Y. Lee and D.R. Kim: Mater. Sci. Eng., 1984, vol. 67, pp. 213-20.CrossRefGoogle Scholar
  29. 29.
    S. Nishijima, E. Suzuki, A. Morii, T. Obata, K. Uchibori, Y. Nikura, K. Nisawa, J. Koarai and Y. Itoh: Trans. Jpn. Soc. Spr. Eng., 1986, vol. 1986, pp. 113-38.Google Scholar
  30. 30.
    H. Suito and R. Inoue: ISIJ Int., 1996, vol. 36, pp. 528-36.CrossRefGoogle Scholar
  31. 31.
    A.B. Stepanov, A.I. Zaitsev, B.A. Sarychev, A.Yu. Dzyuba and A.V. Koldaev: Metallurgist, 2016, vol. 59, pp. 917-22.CrossRefGoogle Scholar
  32. 32.
    Z.B. Li and Z.L. Xue: Iron and Steel, 1999, vol. 34, pp. 20-3.Google Scholar
  33. 33.
    G. Du and H. Guo: Spec. Steel, 2016, vol. 37, pp. 18-22.Google Scholar
  34. 34.
    K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao and Z. Cao: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2198-207.CrossRefGoogle Scholar
  35. 35.
    H. Fredriksson and Ö. Hammar: Metall. Trans. B, 1980, vol. 11, pp. 383-408.CrossRefGoogle Scholar
  36. 36.
    S. Choudhary: J. Mater. Process, 2012, vol. 27, pp. 925-9.CrossRefGoogle Scholar
  37. 37.
    S. Choudhary, S. Chandra and A. Ghosh: Metall. Mater. Trans. B, 2005, vol. 36, pp. 59-66.CrossRefGoogle Scholar
  38. 38.
    B. Koroušić: Steel Res., 1991, vol. 62, pp. 285-8.CrossRefGoogle Scholar
  39. 39.
    H. Ohta and H. Suito: Metall. Mater. Trans. B, 1996, vol. 27, pp. 943-53.CrossRefGoogle Scholar
  40. 40.
    S. Maeda, T. Soejima and T. Saito, 72nd Steelmaking Conference Proceedings, 1989, Iron and Steel Society, Warrendale, PA, pp. 379-85.Google Scholar
  41. 41.
    S.H. Chen, M. Jiang, X.F. He and X.H. Wang: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 490-8.CrossRefGoogle Scholar
  42. 42.
    X.F. Cai, Y.P. Bao, L. Lin and C. Gu: Steel Res. Int., 2016, vol. 87, pp. 1168-78.CrossRefGoogle Scholar
  43. 43.
    K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao and Z. Cao: Metall. Mater. Trans. B, 2016, vol. 47, pp. 282-90.CrossRefGoogle Scholar
  44. 44.
    J. Stewart and D. Williams: Corros. Sci., 1992, vol. 33, pp. 457–63, 465–74.Google Scholar
  45. 45.
    M. Tohjoh, I. Muto, A. Chiba, Y. Sugawara and N. Hara: ECS Trans., 2014, vol. 58, pp. 39-45.CrossRefGoogle Scholar
  46. 46.
    W. Roberts, B. Lehtinen and K. Easterling: Acta Metall., 1976, vol. 24, pp. 745-58.CrossRefGoogle Scholar
  47. 47.
    Kluken, A.O., Ø. Grong and J. Hjelen: Mater. Sci. Technol., 1988, vol. 4, pp. 649-54.CrossRefGoogle Scholar
  48. 48.
    L. Wang and C. Beckermann: Metall. Mater. Trans. B, 2006, vol. 37, pp. 571-88.CrossRefGoogle Scholar
  49. 49.
    R. Neiser, M. Smith and R. Dykhuizen: J. Therm. Spray Technol., 1998, vol. 7, pp. 537-45.CrossRefGoogle Scholar
  50. 50.
    D.C. Hilty and W. Crafts: J. Met., 1950, vol. 2, pp. 414-24.Google Scholar
  51. 51.
    D.C. Hilty and W. Crafts: J. Met., 1950, vol. 2, pp. 425-36.Google Scholar
  52. 52.
    Y. Kawashita and H. Suito: ISIJ Int., 1995, vol. 35, pp. 1459-67.CrossRefGoogle Scholar
  53. 53.
    W. Choi, H. Matsuura and F. Tsukihashi: ISIJ Int., 2011, vol. 51, pp. 1951-6.CrossRefGoogle Scholar
  54. 54.
    Y. Bi, A.V. Karasev and P. Jönsson: ISIJ Int., 2013, vol. 53, pp. 2099-109.CrossRefGoogle Scholar
  55. 55.
    H. Doostmohammadi, A. Karasev and P. Jönsson: Steel Res. Int., 2010, vol. 81, pp. 398-406.CrossRefGoogle Scholar
  56. 56.
    T. Gram: PhD thesis. KTH Royal Institute of Technology, Sweden, 2015.Google Scholar
  57. 57.
    J.H. Qi, C.W. Yang, W.J. Zhu, T. Qu, Y. Liu, Y.Ji: Iron & Steel, 2013, vol. 48, pp. 79-83.Google Scholar
  58. 58.
    W. Yang, X.G. Yang, L.F. Zhang, X.F. Liu: Steelmaking, 2013, vol. 6, pp. 71-8.Google Scholar
  59. 59.
    Chang, Z. Wu, R. Shiue, C. Chang: Mater. Lett., 2007, vol. 61, pp. 842-5.CrossRefGoogle Scholar
  60. 60.
    S.T. Lindsay, M.K. James, E.J. Bunce, S.M. Imber, H. Korth, A. Martindale, T.K. Yeoman: Planet. Space Sci., 2016, vol. 125, pp. 72-9.CrossRefGoogle Scholar
  61. 61.
    S. Kimura, K. Nakajima and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32, pp. 79-85.CrossRefGoogle Scholar
  62. 62.
    L. Zhang and B. Thomas: Metall. Mater. Trans. B, 2006, vol. 37, pp. 733-61.CrossRefGoogle Scholar
  63. 63.
    M. Faraji, D. Wilcox, R. Thackray, A. Howe, I. Todd and P. Tsakiropoulos: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2490-502.CrossRefGoogle Scholar
  64. 64.
    M. Ende, M. Guo, E. Zinngrebe, R. Dekkers, J. Proost, B. Blanpain and P. Wollants: Ironmak. Steelmak., 2009, vol. 36, pp. 201-8.CrossRefGoogle Scholar
  65. 65.
    L. Chen, A. Malfliet, P. Jones, B. Blanpain and M. Guo: Ceram. Int., 2016, vol. 42, pp. 743-51.CrossRefGoogle Scholar
  66. 66.
    S.M. Huang, J.L. Xue and Z.G. Wang: Proceedings 8th International Symposium on High-Temperature Metallurgical Processing, J.-Y. Hwang, T. Jiang, M.W. Kennedy, O. Yucel, P. Pistorius, V. Seshadri, B. Zhao, D. Gregurek and E. Keskinkilic, eds., The Minerals, Metals & Materials Series, Springer International Publishing, pp. 679–88, 2017.Google Scholar
  67. 67.
    A. Ikesue, H. Yamamoto, H. Shikano and K. Hiragushi: Advances in Refractories Technology. Proceedings of International Forum on Advances in Refractories Technology, R.E. Fisher, ed., American Ceramics Society, Westerville, OH, 1989, pp. 464–88.Google Scholar
  68. 68.
    X. Chen, C. Shi, H. Guo, F. Wang, H. Ren and D. Feng: Metall. Mater. Trans. B, 2012, vol. 43, pp. 1596-1607.CrossRefGoogle Scholar
  69. 69.
    C.B. Shi, X.C. Chen, H.J. Guo, Z.J. Zhu and X.L. Sun: Metall. Mater. Trans. B, 2013, vol. 44, pp. 378-89.CrossRefGoogle Scholar
  70. 70.
    Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin: Scanning, 2007, vol. 29, pp. 92-101.CrossRefGoogle Scholar
  71. 71.
    C.W. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, A. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon: Calphad, 2016, vol. 54, pp. 35-53.CrossRefGoogle Scholar
  72. 72.
    M. Allibert, H. Gaye, J. Geiseler, D. Janke, B.J. Keene, D. Kirner, M. Kowalski, J. Lehmann, K.C. Mills and D. Neuschütz, Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995, p. 160.Google Scholar
  73. 73.
    W. Yang, C.B. Guo, L.F. Zhang, H.T. Ling and C. Li: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2717-30.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Sha Lyu
    • 1
    Email author
  • Xiaodong Ma
    • 1
  • Zongze Huang
    • 2
  • Zan Yao
    • 2
  • Hae-Geon Lee
    • 1
  • Zhouhua Jiang
    • 3
  • Geoff Wang
    • 1
  • Jin Zou
    • 1
  • Baojun Zhao
    • 1
  1. 1.University of QueenslandBrisbaneAustralia
  2. 2.Baoshan Iron and Steel Co. LtdShanghaiChina
  3. 3.Northeastern UniversityShenyangChina

Personalised recommendations