Advertisement

Aluminothermic Reduction Process Under Nitrogen Gas Pressure for Preparing High Nitrogen Austenitic Steels

  • Gennady DorofeevEmail author
  • Vladislav Karev
  • Oleg Goncharov
  • Eugeny Kuzminykh
  • Irina Sapegina
  • Alexey Lubnin
  • Marina Mokrushina
  • Vladimir Lad’yanov
Article
  • 29 Downloads

Abstract

The aluminothermic reduction casting process under nitrogen gas pressure to make austenitic Cr-Mn-N (Ni-free) and Cr-N (Ni/Mn-free) high nitrogen stainless steels was investigated. Thermodynamic simulation of the redox reaction depending on process parameters was performed. As a result, the optimal ratio of aluminum to oxygen in the initial powder mixture to obtain the highest yield of metal product with minimal aluminum nitride contamination was predicted to be slightly greater than the stoichiometric ratio of 1.125. Microstructures of aluminothermic 26Cr1N and 23Cr9Mn1N steels, prepared taking into account the results of thermodynamic simulation, were investigated by X-ray diffraction, metallography, and transmission electron microscopy. The as-cast microstructure was a pseudo-pearlite (layered ferrite-nitride mixture) in 26Cr1N steel and a ferrite-austenite with signs of discontinuous austenite decomposition in 23Cr9Mn1N steel. After hot forging and subsequent water quenching from 1200 °C, the microstructure was fully austenitic in both steels. Tensile tests of quenched 23Cr9Mn1N steel showed a combination of high strength (ultimate strength of 1324 MPa) and ductility (elongation of 27 pct). The results illustrate that the aluminothermic casting process for producing high nitrogen steel is competitive with the commonly used methods, such as pressure electroslag remelting, both in terms of cost and mechanical properties of manufactured steel.

Notes

Acknowledgments

This work was funded by the Russian Federal Agency for Scientific Organizations (Project No. AAAA-A17-117022250039-4) and partially supported by the Presidium of the Ural Branch of the Russian Academy of Sciences (Project No. 18-10-2-41). The authors thank B.E. Pushkarev for performing scanning electron microscopy investigations.

References

  1. 1.
    H.J.T. Ellingham: J. Soc. Chem. Ind., 1944, vol. 63, pp. 125–33.CrossRefGoogle Scholar
  2. 2.
    P. La, F. Wei, X. Lu, T. Shi, C. Chu, Y. Wei, and H. Wang: Philos. Mag. Lett., 2014, vol. 94 (8), pp. 478–86.CrossRefGoogle Scholar
  3. 3.
    P. La, F. Wei, X. Lu, C. Chu, Y. Wei, and H. Wang: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5236–44.CrossRefGoogle Scholar
  4. 4.
    Z.N. Li, F.A. Wei, P.Q. La, and F.L. Ma: Met. Mater. Int., 2018, vol. 24, pp. 633–43.CrossRefGoogle Scholar
  5. 5.
    J. Feizabadi, J.V. Khaki, M.H. Sabzevar, M. Sharifitabar, and S.A. Sani: Mater. Des., 2015, vol. 84, pp. 325–30.CrossRefGoogle Scholar
  6. 6.
    J.M. Simmons: Mater. Sci. Eng. A, 1996, vol. 207, pp. 159–69.CrossRefGoogle Scholar
  7. 7.
    M.O. Speidel: Materialwissenschaft Werkstofftechnik, 2006, vol. 37, pp. 875–80.CrossRefGoogle Scholar
  8. 8.
    V.G. Gavriljuk and H. Berns: High Nitrogen Steel: Structure, Properties, Manufacture, Applications, Springer-Verlag, Heidelberg, Germany, 1999.CrossRefGoogle Scholar
  9. 9.
    A. Di Schino, J.M. Kenny, M.G. Mecozzi, and M. Barteri: J. Mater. Sci., 2000, vol. 35, pp. 4803–08.CrossRefGoogle Scholar
  10. 10.
    Z.H. Jiang, Z.R. Zhang, H.B. Li, Z.Li, and Q.F. Ma: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 729–36.CrossRefGoogle Scholar
  11. 11.
    W. Uter, A. Pfahlberg, O. Gefeller, J. Geier, and A. Schnuch: Contact Dermatitis, 2003, vol. 48, pp. 33–38.CrossRefGoogle Scholar
  12. 12.
    K. Yang and Y. Ren: Sci. Technol. Adv. Mater., 2010, vol. 11, p. 014105.CrossRefGoogle Scholar
  13. 13.
    D. Kuroda, S. Hiromoto, T. Hanawa, and Y. Katada: Mater. Trans., 2002, vol. 43, pp. 3100–04.CrossRefGoogle Scholar
  14. 14.
    A. Akbari and R. Mohammadzadeh: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1570–79.CrossRefGoogle Scholar
  15. 15.
    T. Rashev: High Nitrogen Steels: Metallurgy under Pressure, Academic Publishing House of Bulgarian Academy of Science, Sofia, 1995.Google Scholar
  16. 16.
    T.V. Rashev, L.T. Zhekova, and P.V. Bogev: Steel Transl., 2017, vol. 47 (1), pp. 26–31.CrossRefGoogle Scholar
  17. 17.
    A.D. Patel, J. Reitz, J.H. Magee, R. Smith, G. Maurer, and B. Friedrich: Int. Symp. Liq. Met. Process. Cast., TMS, Warrendale, PA, 2009.Google Scholar
  18. 18.
    V.I. Yukhvid: Adv. Mater. Technol., 2016, vol. 4, pp. 23–34.Google Scholar
  19. 19.
    G. Liu, J. Li, and K. Chen: in Handbook of Combustion, Vol. 1, M. Lackner, F. Winter, and A.K. Agarwal, eds., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.Google Scholar
  20. 20.
    A.G. Merzhanov: Russ. Chem. Rev., 1976, vol. 45, pp. 409–20.CrossRefGoogle Scholar
  21. 21.
    Z.A. Munir and U. Anselmi-Tamburini: Mater. Sci. Rep., 1989, vol. 3, pp. 279–365.CrossRefGoogle Scholar
  22. 22.
    C.L. Yeh and E.W. Liu: J. Alloys Compd., 2006, vol. 426, pp. 131–35.CrossRefGoogle Scholar
  23. 23.
    G.A. Dorofeev, V.I. Lad’janov, A.N. Lubnin, V.A. Karev, B.E. Pushkarev, and M.I. Mokrushina: Himich. Fiz. Mezosk., 2010, vol. 12, pp. 5–12 (in Russian).Google Scholar
  24. 24.
    Nitride Ceramics: Combustion Synthesis, Properties and Applications, A.A. Gromov and L.N. Chukhlomina, eds., Wiley, Weinheim, 2014.Google Scholar
  25. 25.
    B.S. Braverman, M.K. Ziatdinov, and Y.M. Maksimov: Combust., Explos. Shock Waves, 1999, vol. 35, pp. 501–05.CrossRefGoogle Scholar
  26. 26.
    Z.A. Mansurov, S.M. Fomenko, A.N. Alipbaev, R.G. Abdulkarimova, and V.E. Zarko: Combust., Explos. Shock Waves, 2016, vol. 52, pp. 184–92.CrossRefGoogle Scholar
  27. 27.
    J.J. Moore and H.J. Feng: Progr. Mater. Sci., 1995, vol. 39, pp. 243–73.CrossRefGoogle Scholar
  28. 28.
    K. Morsi: J. Mater. Sci., 2012, vol. 47, pp. 68–92.CrossRefGoogle Scholar
  29. 29.
    N.A. Vatolin, G.K. Moiseev, and B.G. Trusov: Thermodynamic Modeling in High Temperature Inorganic Systems, Metallurgy, Moscow, 1994 (in Russian).Google Scholar
  30. 30.
    O.Y. Goncharov: Inorg. Mater., 2004, vol. 40, pp. 1295–1300.CrossRefGoogle Scholar
  31. 31.
    O.Y. Goncharov and O.M. Kanunnikova: Industr. Lab.: Diag. Mater., 2012, vol. 78, pp. 36–41 (in Russian).Google Scholar
  32. 32.
    V.P. Glushko: in Termicheskie Konstanty Veshchestv (“Thermal Constants of Substances”), Handbook in 10 Issues, VINITI, Moscow, 1965–1981 (in Russian).Google Scholar
  33. 33.
    C. Wagner: Thermodynamics of Alloys, Addison-Wesley Press, Cambridge, MA, 1952.Google Scholar
  34. 34.
    M. Temkin: Acta Phys. Chim. U.R.S.S., 1945, vol. 20, pp. 411–20.Google Scholar
  35. 35.
    C.K. Gupta: Chemical Metallurgy: Principles and Practice, Wiley-VCH Verlag, Weinheim, 2003.CrossRefGoogle Scholar
  36. 36.
  37. 37.
    D. Belitskus: JOM, 1972, vol. 24, pp. 30–34.CrossRefGoogle Scholar
  38. 38.
    N.C.S. Srinivas and V.V. Kutumbarao: Scripta Mater., 1997, vol. 37, pp. 285–91.CrossRefGoogle Scholar
  39. 39.
    P.A. Carvalho, I.F. Machado, G. Solorzano, and A.F. Padilha: Philos. Mag., 2008, vol. 88, pp. 229–42.CrossRefGoogle Scholar
  40. 40.

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Gennady Dorofeev
    • 1
    Email author
  • Vladislav Karev
    • 1
  • Oleg Goncharov
    • 1
  • Eugeny Kuzminykh
    • 1
  • Irina Sapegina
    • 1
  • Alexey Lubnin
    • 1
  • Marina Mokrushina
    • 1
  • Vladimir Lad’yanov
    • 1
  1. 1.Udmurt Federal Research CentreUral Branch of the Russian Academy of ScienceIzhevskRussia

Personalised recommendations