Formation Mechanisms and Leachability of Hexavalent Chromium in Cr2O3-Containing Refractory Castables of Electric Arc Furnace Cover

  • Yingjiang Wu
  • Shengqiang SongEmail author
  • Zhengliang Xue
  • Mithun Nath


Cr (III)-containing refractories are widely used as electric-arc furnace cover because of their excellent corrosion resistance properties. However, the formation of hexavalent chromium [Cr(VI)] remains a matter of concern during the service and subsequent disposal of the spent refractories. Moreover, the Cr(VI) formation mechanism and total amount of Cr(VI) generated are not clearly understood. In this study, samples from different parts of a spent electric arc furnace cover were collected from a local integrated steel plant. The phase composition, microstructure, formation and leachability of Cr(VI) were investigated using X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy, and TRGS 613 leaching test (Technische Regeln für Gefahrstoffe-TRGS 613-October 2002)/multiple leaching tests. A Cr(VI)-containing phase namely CaCrO4 existed in the sample at a medium temperature range, while another Cr(VI)-containing phase namely hauyne (Ca4Al6CrO16) and a Cr(III)-containing phase (Al2O3–Cr2O3 solid solution) formed in the high temperature region. Concentrations of Cr(VI) in the leachates (as in the TRGS 613 procedure) exceeded the European permissible limit. During the leaching tests in an acid condition, Cr(VI) was reduced by Fe2+, which was primarily derived from the dissolution of FeO in the samples, while more Cr(VI) leached out with distilled water. Formation of an Al2O3–Cr2O3 solid solution can inhibit Cr(VI) generation.



This work was supported by the National Natural Science Foundation of China (No. 51604203) and the Hubei Chutian Scholar Program.


  1. 1.
    A. D. Dayan and A. J. Paine: Hum. Exp. Toxicol., 2001, vol. 20, pp. 439-451.CrossRefGoogle Scholar
  2. 2.
    R. H. Zhang, B. Wang and H. Z. Ma: Desalination., 2010, vol. 255, pp. 61-66.CrossRefGoogle Scholar
  3. 3.
    Y. B. Zeng, H. Woo G. Lee and J. Park: Desalination., 2010, vol. 257, pp. 102-109.CrossRefGoogle Scholar
  4. 4.
    L. N. Zou, S. X. Wang, L. Liu, M. Z. Hashmi, X. J. Tang and J. Y. Shi: Environ. Earth Sci., 2015, vol. 74, pp. 2861-2870.CrossRefGoogle Scholar
  5. 5.
    G. Ma and A.M. Garbers-Craig: J. Hazardous Mater., 2009, vol. 169, pp. 210-216.CrossRefGoogle Scholar
  6. 6.
    U. S Environmental Protection Agency No. 18540-29-9, Toxicological review of hexavalent chromium, USA, Washington, 1998.Google Scholar
  7. 7.
    G. L. Huang, J. X. Shi and T.A.G. Langrish: Chem. Eng. J., 2009, vol. 152, pp. 434-439.CrossRefGoogle Scholar
  8. 8.
    EU directive 2003/53/EC. Restrictions on the Marketing and Use of Cements and Cement-Containing Preparations, 2003.Google Scholar
  9. 9.
    A. Hosseini-Bandegharaei, M. S. Hosseini, M. Sarw-Ghadi, S. Zowghi, E. Hosseini and H. Hosseini-Bandegharaei: Chem. Eng. J., 2010, vol. 160, pp. 231-239.CrossRefGoogle Scholar
  10. 10.
    A. F. Stam, R. Meij, H. T. Winkel, R. J. V. Eijk, F. E. Huggins and G. Brem: Environ. Sci. Technol., 2011, vol. 45, pp. 2450-2456.CrossRefGoogle Scholar
  11. 11.
    J. Lehmusto, D. Lindberg, P. Yrijas, B. J. Skrifvars and M. Hupa: Corros. Sci., 2012, vol. 59, pp. 55-62.CrossRefGoogle Scholar
  12. 12.
    H. Xu, Y. Zhang, Z. Li, S. Zheng, Z. Wang, T. Qi and H. Li: J. Clean. Prod., 2006, vol. 14, pp. 211-219.CrossRefGoogle Scholar
  13. 13.
    T. Elhasan, W. Szczerba, G. Buzanich, M. Radtke, H. Riesemeier and and M. Kersten Environ. Sci. Technol., 2011, vol. 45, pp. 9799-9805.CrossRefGoogle Scholar
  14. 14.
    D. W. Kirk, C. Chan and H. Marsh: J. Hazard. Mater., 2002, vol. 90, pp. 39-49.CrossRefGoogle Scholar
  15. 15.
    G. Ma, W. Fan, Z. Xue, W. Wang and H. Tang: Acta. Metall. Sin-Engl., 2010, vol. 23, pp. 267-276.Google Scholar
  16. 16.
    T. Sofilic, A. Rastovcan-Mioc, S. Cerjan-Stefanovic, V. Novosel-Radovic and M. Jenko: J. Hazard. Mater., 2004, vol. 109,pp. 59-70.CrossRefGoogle Scholar
  17. 17.
    World Steel Association. World steel in figures 2016, Brussels,; 2016.
  18. 18.
    A. Gharib Mombeni, E. Hajidavalloo and M. Behbahani-Nejad Appl. Therm. Eng., 2016, vol. 98, pp. 80-87.CrossRefGoogle Scholar
  19. 19.
    J. Madias: in Electric Furnace Steelmaking, Treatise on Process Metallurgy, 2014, pp. 271–300.Google Scholar
  20. 20.
    R. Sun, Z. He and H. Wang: Industrial Heating., 2008, vol. 37, pp. 43-47 (in Chinese).Google Scholar
  21. 21.
    T. Hirata, K. Akiyam and H. Yamamoto: J. Mater. Sci., 2001, vol. 36, pp. 5927-5934.CrossRefGoogle Scholar
  22. 22.
    S. Song and A.M. Garbers-Craig: Refractories Worldforum., 2016, vol. 8, pp.70-74.Google Scholar
  23. 23.
    S. Song and A. M. Garbers-Craig: J. Eur. Ceram. Soc., 2016, vol. 36, pp. 1479-1485.CrossRefGoogle Scholar
  24. 24.
    Y. Wu, S. Song, A. M. Garbers-Craig, Z. Xue, Formation and leachability of hexavalent chromium in the Al2O3-CaO-MgO-Cr2O3 system. J. Eur. Ceram. Soc., 2018, vol. 38, pp. 2649-2661.CrossRefGoogle Scholar
  25. 25.
    M. Nath, S. Song, Y. Li and Y. Xu: Ceram. Int., 2018, vol. 44, pp. 2383-2389.CrossRefGoogle Scholar
  26. 26.
    Y. Lee and C. L. Nassaralla: Metall. Mater. Trans. B., 1998, vol, 29, pp. 405-410.CrossRefGoogle Scholar
  27. 27.
    Y. Lee and C. L. Nassaralla: Metall. Mater. Trans. B., 1997, vol. 28, pp. 855-859.CrossRefGoogle Scholar
  28. 28.
    S. Mizuhara, T. Urabe, and A. Yamaguchi: J. Mater. Cycles. Waste., 2010, vol. 21, pp. 170-177.CrossRefGoogle Scholar
  29. 29.
    S. Mizuhara, T. Urabe, A. Yamaguchi and T. Tomoyuki:Journal of the Japan Society of Waste Management Experts., 2012, vol. 23, pp. 77-84 (in Japanese). Google Scholar
  30. 30.
    T. He and J. Kong: Machinery., 2009, vol. 47, pp. 35-37 (in Chinese).Google Scholar
  31. 31.
    J. W. Ball and J. A. Izbicki: Appl. Geochem., 2004, vol. 19, pp. 1123-1135.CrossRefGoogle Scholar
  32. 32.
    R. Cheng, C. N. Borca, N. Pilet, B. Xu, L. Yuan, B. Doudin, S. H. Liou and P. A. Dowben: Appl. Phys. Lett., 2002, vol. 81, pp. 2109-2111.CrossRefGoogle Scholar
  33. 33.
    ‘NIST X-ray photoelectron spectroscopy database Version 2.0’, US Secretary of Commerce, 1989, Washington, DC, US Secretary of Commerce.Google Scholar
  34. 34.
    J. Chastain (Ed.): Handbook of X-ray photoelectron spectroscopy, 1992, Eden Prairie, MI, Perkin–Elmer.Google Scholar
  35. 35.
    L. Mao, N. Deng, L. Liu, H. Cui and W. Zhang: Chem. Eng. J., 2016, vol. 304, pp. 216-222.CrossRefGoogle Scholar
  36. 36.
    S. Song and A.M. Garbers-Craig: in Advances in Molten Slags, Fluxes, and Salts Advances in Molten Slags, Fluxes, and Salts, 2016.Google Scholar
  37. 37.
    F. Bondioli, A. M. Ferrari, C. Leonelli, T. Manfredini, L. Linati and P. Mustarelli: J. Am. Ceram. Soc., 2000, vol. 83, pp. 2036-2040.CrossRefGoogle Scholar
  38. 38.
    A. F. White and M. L. Peterson: Geochim. Cosmochim. Ac., 1996, vol. 60, pp. 3799-3814.CrossRefGoogle Scholar
  39. 39.
    C. Han, Y. Jiao, Q. Wu, W. Yang, H. Yang and X. Xue: J. Environ. Sci-China., 2016, vol. 46, pp. 63-71.CrossRefGoogle Scholar
  40. 40.
    G. Qin, M. J. Mcguire, N. K. Blute, C. Seidel and L. Fong: Environ. Sci. Technol., 2005, vol. 39, pp: 6321-6327.CrossRefGoogle Scholar
  41. 41.
    D. Park, S. Lim, H. W. Lee and J. M. Park: Hydrometallurgy., 2008, vol. 93, pp: 72-75.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Yingjiang Wu
    • 1
    • 2
    • 3
  • Shengqiang Song
    • 1
    • 2
    • 3
    Email author
  • Zhengliang Xue
    • 1
    • 2
    • 3
  • Mithun Nath
    • 1
  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of EducationWuhan University of Science and TechnologyWuhanChina
  3. 3.Hubei Provincial Engineering Technology Research Center of Metallurgical Secondary ResourcesWuhanChina

Personalised recommendations