Advertisement

Spark Plasma Extrusion and the Thermal Barrier Concept

  • L. ČelkoEmail author
  • M. Menelaou
  • M. Casas-Luna
  • M. Horynová
  • T. Musálek
  • M. Remešová
  • S. Díaz-de-la-Torre
  • K. Morsi
  • J. Kaiser
Article
  • 26 Downloads

Abstract

Spark plasma sintering (SPS) is currently a major powder consolidation process with many advantages; however, it is still largely limited to the processing of simple shapes such as discs due to its geometric restrictions. Alternatively, spark plasma extrusion (SPE) is a recently developed process that has superiority over SPS in terms of faster consolidation, generating products of extended geometries and potential grain refinement capabilities under applied current. So far, work on SPE has resulted in large temperature gradients within the extruding material with microstructural and properties in-homogeneities. The present paper reports on a novel approach (thermal barrier concept) that allows the SPE of materials with enhanced uniformity in terms of microstructures and properties. Both aluminum and aluminum-carbon nanotube composites have been successfully processed using this new approach.

Notes

Acknowledgments

This work was financially supported by the Czech Science Foundation under the project GA 15-20991S. We also want to acknowledge access to the scanning electron microscopes provided within the frame of the projects CEITEC 2020 (LQ1601) and CEITEC Nano RI, MEYES CR, 2016-2019.

References

  1. 1.
    R. Orrú, R. Licheri, A.M. Locci, A. Cincotti and G. Cao: Mater. Sci. Eng. R, 2009, vol. 63, pp. 127-287.CrossRefGoogle Scholar
  2. 2.
    T. Grosdidier, G. Ji and S. Launois: Scripta Mater., 2007, vol. 57, pp. 525-28.CrossRefGoogle Scholar
  3. 3.
    Z.A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: J. Mater. Sci., 2006, vol. 41, pp. 763-77.CrossRefGoogle Scholar
  4. 4.
    M. Tokita: Pulse Electric Current Synthesis and Processing of Materials, John Wiley & Sons Inc., New Jersey, NY, 2006, pp. 50-59.Google Scholar
  5. 5.
    M.A. Hussein, C. Suryanarayana and N. Al-Aqeeli: Mater. Design, 2015, vol. 87, pp. 693-700.CrossRefGoogle Scholar
  6. 6.
    K.J. Kim, S.H. Jang, Y.W. Kim, B.K. Jang and T.Nishimura: Ceram. Int., 2016, vol. 42, 17892-96.CrossRefGoogle Scholar
  7. 7.
    V.R. Mudinepalli, S.H. Song and B.S. Murty: Scripta Mater., 2014, vol. 82, pp. 9-12.CrossRefGoogle Scholar
  8. 8.
    M. Tokita: Mater. Sci. Forum, 1999, vols. 308-311, pp. 83-88.CrossRefGoogle Scholar
  9. 9.
    X. Wang, S.R. Casolco, G. Xu and J.E. Garay: Acta Mater., 2007, vol. 55, pp. 3611-22.CrossRefGoogle Scholar
  10. 10.
    S. Grasso, Y. Sakka and G. Maizza: Sci. Technol. Adv. Mat., 2009, vol. 10, p. 053001.CrossRefGoogle Scholar
  11. 11.
    M. Tokita: US Patent No. 6383446, 2002.Google Scholar
  12. 12.
    K. Lichtinghagen: US Patent No. 4420294, 1983.Google Scholar
  13. 13.
    K. Morsi, A. El-Desouky, B. Johnson, A. Mar and S. Lanka: Scripta Mater., 2009, vol. 61, pp. 395-98.CrossRefGoogle Scholar
  14. 14.
    E. Novitskaya, T.A. Esquivel-Castro, G.R. Dieguez-Trejo, A. Kritsuk, J.T. Cahill, S. Díaz-de-la-Torre and O.A. Graeve: Mat. Sci. Eng. A, 2018, vol. 717, pp. 62-67.CrossRefGoogle Scholar
  15. 15.
    K. Morsi, A.M.K. Esawi, P. Borah, S. Lanka, A. Sayed and M. Taher: Mat. Sci. Eng. A-Struct., 2010, vol. 527, pp. 5686-90.CrossRefGoogle Scholar
  16. 16.
    T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Geauga County, OH, 1990.Google Scholar
  17. 17.
    J. Sun and S.L. Simon: Thermochim. Acta, 2007, vol. 463, pp. 32-40.CrossRefGoogle Scholar
  18. 18.
    L. Čelko, S. Díaz-de-laTorre, L. Klakurková, J. Kaiser, B. Smetana, K. Slámečka, M. Žaludová and J. Švejcarab: Surf. Coat. Tech., 2014, vol. 258, pp. 95-101.CrossRefGoogle Scholar
  19. 19.
    W. Jiang, Z. Fan, D. Liu, D. Liao, X. Dong and X. Zong: Mat. Sci. Eng. A-Struct., 2013, vol. 560, pp. 396-403.CrossRefGoogle Scholar
  20. 20.
    X.P. Niu, B.H. Hu, I. Pinwill and H. Li: J. Mater. Process. Tech., 2000, vol. 105, pp. 119-27.CrossRefGoogle Scholar
  21. 21.
    R. Darolia: Int. Mater. Rev., 2013, vol. 58, pp. 315-48.CrossRefGoogle Scholar
  22. 22.
    J.-M. Molina, M. Rheme, J. Carron and L. Weber: Scripta Mater., 2008, vol. 58, pp. 393-96.CrossRefGoogle Scholar
  23. 23.
    J.A. Kyong: Mater. Trans., 2014, vol. 55, pp. 188-93.CrossRefGoogle Scholar
  24. 24.
    A.J. Mackie, G.D. Hatton, H.G.C. Hamilton, J.S. Dean and R. Goodall: Mater. Lett., 2016, vol. 171, pp. 14-17.CrossRefGoogle Scholar
  25. 25.
    D.V. Dudina, B.B. Bokhonov, A.V. Ukhina, A.G. Anisimov, V.I. Mali, M.A. Esikov, I.S. Batraev, O.O. Kuznechik and L.P. Pilinevich: Mater. Lett., 2016, vol. 168, pp. 62-67.CrossRefGoogle Scholar
  26. 26.
    D. Tiwari, B. Basu and K. Biswas: Ceram. Int., 2009, vol. 35, pp. 699-708.CrossRefGoogle Scholar
  27. 27.
    T. Voisin, L. Durand, N. Karnatak, S. Le Gallet, M. Thomas, Y. Le Berree, J. F. Castagné and A. Couret: J. Mater. Process. Tech., 2013, vol. 213, pp. 269-78.CrossRefGoogle Scholar
  28. 28.
    C. Manière, G. Lee and E.A. Olevsky: Results Phys., 2017, vol. 7, pp. 1494-97.CrossRefGoogle Scholar
  29. 29.
    X. Song, X. Liu and J. Zhang: J. Am. Ceram. Soc., 2006, vol. 89, pp. 494-500.CrossRefGoogle Scholar
  30. 30.
    D. Singla, K. Amulya, Q. Murtaza: Mater. Today Proc., 2015, vol. 2, pp. 2886-95.CrossRefGoogle Scholar
  31. 31.
    H. Kwon, M. Estili, K. Takagi, T. Miyazaki and A. Kawasaki: Carbon, 2009, vol. 47, pp. 570-77.CrossRefGoogle Scholar
  32. 32.
    M. Lewandowska and K. Kurzydlowski: J. Mat. Sci., 2008, vol. 43, pp. 7299-7306.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • L. Čelko
    • 1
    Email author
  • M. Menelaou
    • 1
  • M. Casas-Luna
    • 1
  • M. Horynová
    • 1
  • T. Musálek
    • 2
  • M. Remešová
    • 1
  • S. Díaz-de-la-Torre
    • 3
  • K. Morsi
    • 4
  • J. Kaiser
    • 1
  1. 1.CEITEC – Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
  2. 2.Activair s.r.o. – Sadová 44OpavaCzech Republic
  3. 3.CIITEC – Instituto Politécnico Nacional, Centro de Investigación e Innovación TecnológicaMexicoMexico
  4. 4.Department of Mechanical EngineeringSan Diego State UniversitySan DiegoUSA

Personalised recommendations