Advertisement

Influence of Aluminum-Carbon Composite Pellets on FeO Reduction and Iron Recovery from Electric Arc Furnace Slag

  • Jung Ho Heo
  • Jun Soo Yoo
  • Yongsug ChungEmail author
  • Joo Hyun ParkEmail author
Article
  • 23 Downloads

Abstract

We investigated the effect of Al-C composite pellets (ACCP) on the reduction behavior of FeO in electric arc furnace (EAF) slag and the iron recovery at different nAl/(nAl + nC) at 1823 K (1550 °C). A carbothermic reaction was the dominant process at nAl/(nAl + nC) < 0.4, whereas aluminothermic reduction was the major process at nAl/(nAl + nC) > 0.6; these observations are based on the final content of FeO and Al2O3 in the molten slag. The aluminum and carbon present in the ACCP competitively affected the reaction stoichiometry (i.e., the material balance) between the production of CO + Al2O3 and the consumption of FeO. Iron recovery increased up to a yield of approx. 90 pct as the nAl/(nAl + nC) ratio increased. Because Al in the ACCP readily reacts to reduce FeO in the molten slag, iron recovery is proportional to the nAl/(nAl + nC) ratio. The precipitation of solid compounds in the slag phase, such as monoxide ([Mg,Fe]·O) and spinel (MgO·Al2O3), occurred during FeO reduction; this was experimentally confirmed as well as by thermochemical computation. Furthermore, we proposed a schematic reaction mechanism in the present study.

Notes

Acknowledgments

This work was partly supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant (Grant number 20172010106310) and by Korea Evaluation Institute of Industrial Technology (KEIT) grant (Grant number 10062469) funded by the Ministry of Trade, Industry & Energy (MOTIE), Korea.

References

  1. 1.
    World Steel Association, Crude Steel Production, 2012.Google Scholar
  2. 2.
    World Steel Dynamics, World Steel Dynamics Report-Scrap Outlook: A New Bundle, 2012.Google Scholar
  3. 3.
    B. Lee and I. Sohn: JOM, 2014, vol. 66, pp. 1581-94.CrossRefGoogle Scholar
  4. 4.
    H. Shen and E. Forssberg: Waste Manage., 2003, vol. 23, pp. 933-49.CrossRefGoogle Scholar
  5. 5.
    M.S. Bafghi, H. Kurimoto and M. Sano: ISIJ Int., 1992, vol. 32, pp. 1084-90.CrossRefGoogle Scholar
  6. 6.
    M.S. Bafghi, M. Fukuda, Y. Ito, S. Yamada and M. Sano: ISIJ Int., 1993, vol. 33, pp. 1125-30.CrossRefGoogle Scholar
  7. 7.
    B. Sarma, A.W. Cramb and R.J. Fruehan: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 717-30.CrossRefGoogle Scholar
  8. 8.
    S.R. Story, B. Sarma, R.J. Fruehan, A.W. Cramb and G.R. Belton: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 929-32.CrossRefGoogle Scholar
  9. 9.
    Y. Sasaki and T. Soma: Metall. Trans. B, 1977, vol. 8B, pp. 189-90.CrossRefGoogle Scholar
  10. 10.
    D.J. Min, J.W. Han and W.S. Chung: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 215-21.CrossRefGoogle Scholar
  11. 11.
    K.Y. Seo and R.J. Fruehan: ISIJ Int., 2000, vol. 40, pp. 7-15.CrossRefGoogle Scholar
  12. 12.
    S.L. Teasdale and P.C. Hayes: ISIJ Int., 2005, vol. 45, pp. 634-41.CrossRefGoogle Scholar
  13. 13.
    S.L. Teasdale and P.C. Hayes: ISIJ Int., 2005, vol. 45, pp. 642-50.CrossRefGoogle Scholar
  14. 14.
    R. Corbari, H. Matsuura, S. Halder, M. Walker and R. Fruehan: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 940-48.CrossRefGoogle Scholar
  15. 15.
    J.H. Heo, B.S. Kim and J.H. Park: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1352-63.CrossRefGoogle Scholar
  16. 16.
    S.K. Tarby and W.O. Philbrook: Trans. TMS-AIME, 1967, vol. 239, pp. 1005-17.Google Scholar
  17. 17.
    R.K. Paramguru, H.S. Ray and P. Basu: ISIJ Int., 1997, vol. 37, pp. 756-61.CrossRefGoogle Scholar
  18. 18.
    B. Sarangi, A. Sarangi and H.S. Ray: ISIJ Int., 1996, vol. 36, pp. 1135-41.CrossRefGoogle Scholar
  19. 19.
    B. Sarangi, R.R. Dash and H.S. Ray: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1135-36.CrossRefGoogle Scholar
  20. 20.
    O.M. Cintho, C.P.D. Lazzari and J.D.T. Capocchi: ISIJ Int., 2004, vol. 44, pp. 781-84.CrossRefGoogle Scholar
  21. 21.
    J.H. Park, H.S. Song and D.J. Min: ISIJ Int., 2004, vol. 44, pp. 790-94.CrossRefGoogle Scholar
  22. 22.
    J. Yang, M. Kuwabara, T. Sawada and M. Sano: ISIJ Int., 2006, vol. 46, pp. 1130-36.CrossRefGoogle Scholar
  23. 23.
    J.H. Heo, Y. Chung and J.H. Park: J. Clean. Prod., 2016, vol. 137, pp. 777-87.CrossRefGoogle Scholar
  24. 24.
    J.H. Heo and J.H. Park: Calphad, 2017, vol. 58, pp. 219-28.CrossRefGoogle Scholar
  25. 25.
    J.H. Heo and J.H. Park: Calphad, 2017, vol. 58, pp. 229-38.CrossRefGoogle Scholar
  26. 26.
    A. Takeuchi, H. Hashimoto, K. Tanaka, N. Tanahashi and K. Nakata: J. Jpn. Inst. Light Met., 1996, vol. 46, pp. 592-96.CrossRefGoogle Scholar
  27. 27.
    O. Manfredi, W. Wuth and I. Bohlinger: JOM, 1997, vol. 49, pp. 48-51.CrossRefGoogle Scholar
  28. 28.
    M. Ueda, M. Amemiya, T. Ishikawa and T. Ohtsuka: J. Jpn. Inst. Light Met., 1999, vol. 63, pp. 279-83.CrossRefGoogle Scholar
  29. 29.
    T. Hashishin, Y. Kodera, T. Yamamoto, M. Ohyanagi and Z.A. Munir: J. Am. Ceram. Soc., 2004, vol. 87, pp. 496-99.CrossRefGoogle Scholar
  30. 30.
    H.N. Yoshimura, A.P. Abreu, A.L. Molisani, A.C. de Camargo, J.C.S. Portela and N.E. Narita: Ceram. Int., 2008, vol. 34, pp. 581-91.CrossRefGoogle Scholar
  31. 31.
    E.T. Turkdogan: Physical Chemistry of High Temperature Technology. Academic Press, New York, 1980, pp. 1-24.Google Scholar
  32. 32.
    R. Roscoe: Br. J. Appl. Phys., 1952, vol. 3, pp. 267-69.CrossRefGoogle Scholar
  33. 33.
    S. Wright, L. Zhang, S. Sun and S. Jahanshahi: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 97-104.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringHanyang UniversityAnsanKorea
  2. 2.Department of Advanced Materials EngineeringKorea Polytechnic UniversitySiheungKorea

Personalised recommendations