Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 123–135 | Cite as

Examination of Dendritic Growth During Solidification of Ternary Alloys via a Novel Quantitative 3D Cellular Automaton Model

  • Cheng Gu
  • Colin D. Ridgeway
  • Alan A. LuoEmail author
Article
  • 153 Downloads

Abstract

A three-dimensional (3D) quantitative cellular automaton (CA) model was developed to simulate dendritic growth during solidification processing of ternary alloys. A detailed method was proposed to solve solute diffusion and calculate the solid fraction for ternary alloys during solidification. The present model has been shown to accurately predict dendrite morphologies and solute distributions of both single equiaxed dendrite and columnar dendrites during solidification. The model was also used to study the influence of the concentration of a third component (Mg in the Al-Si-Mg system) on dendritic growth. With increasing Mg concentration, the steady-state dendrite tip growth velocity was shown to decrease, resulting in a shorter primary dendrite length. The 3D CA simulation results agree well with the prediction of the LGK theoretical model. Multi-columnar dendrite growth was simulated with different cooling rates. Primary and secondary dendrite morphology was shown to have little variation at low cooling rates (1.0 to 2.0 K/s) and a constant undercooling. The average secondary dendrite arm spacing was shown to decrease with the increase of cooling rate within this range. The 3D CA simulation results are in good agreement with the experimental directional solidification experiments of a commercial A356 (Al-7 wt pct Si-0.3 wt pct Mg).

Notes

Acknowledgment

The authors would like to acknowledge the National Science Foundation for supporting this work (Award CMMI-1432688).

References

  1. 1.
    1 S.A. David, S.S. Babu, and J.M. Vitek: Trans. JWRI., 1996, vol. 25, pp. 127–43.Google Scholar
  2. 2.
    2 W. Tan, S. Wen, N. Bailey, and Y.C. Shin: Metall. Mater. Trans. B, 2011, vol. 42, pp. 1306–18.CrossRefGoogle Scholar
  3. 3.
    3 M.F. Zhu and C.P. Hong: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1555–63.CrossRefGoogle Scholar
  4. 4.
    4 D. Apelian: JOM, 2008, vol. 60, pp. 9–10.CrossRefGoogle Scholar
  5. 5.
    5 M. Li: JOM, 2011, vol. 63, p. 14.CrossRefGoogle Scholar
  6. 6.
    6 A.G. Murphy, D.J. Browne, W.U. Mirihanage, and R.H. Mathiesen: Acta Mater., 2013, vol. 61, pp. 4559–71.CrossRefGoogle Scholar
  7. 7.
    7 G. Salloum-Abou-Jaoude, G. Reinhart, H. Combeau, M. Založnik, T.A. Lafford, and H. Nguyen-Thi: J. Cryst. Growth, 2015, vol. 411, pp. 88–95.CrossRefGoogle Scholar
  8. 8.
    8 W. Wang, P.D. Lee, and M. McLean: Acta Mater., 2003, vol. 51, pp. 2971–87.CrossRefGoogle Scholar
  9. 9.
    9 S. Luo and M.Y. Zhu: Comput. Mater. Sci., 2013, vol. 71, pp. 10–8.CrossRefGoogle Scholar
  10. 10.
    10 M.F. Zhu and D.M. Stefanescu: Acta Mater., 2007, vol. 55, pp. 1741–55.CrossRefGoogle Scholar
  11. 11.
    11 D. Tourret, Y. Song, A.J. Clarke, and A. Karma: Acta Mater., 2017, vol. 126, p. 576.CrossRefGoogle Scholar
  12. 12.
    12 A. Choudhury, K. Reuther, E. Wesner, A. August, B. Nestler, and M. Rettenmayr: Comput. Mater. Sci., 2012, vol. 55, pp. 263–8.CrossRefGoogle Scholar
  13. 13.
    13 A. Pineau, G. Guillemot, D. Tourret, A. Karma, and C.A. Gandin: Acta Mater., 2018, vol. 155, pp. 286–301.CrossRefGoogle Scholar
  14. 14.
    14 M. Rappaz and C.A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345–60.CrossRefGoogle Scholar
  15. 15.
    15 L. Nastac: Acta Mater., 1999, vol. 47, pp. 4253–62.CrossRefGoogle Scholar
  16. 16.
    16 H.B. Dong and P.D. Lee: Acta Mater., 2005, vol. 53, pp. 659–68.CrossRefGoogle Scholar
  17. 17.
    17 R. Han, S. Lu, W. Dong, D. Li, and Y. Li: J. Cryst. Growth, 2015, vol. 431, pp. 49–59.CrossRefGoogle Scholar
  18. 18.
    18 W. Tan and Y.C. Shin: Comput. Mater. Sci., 2015, vol. 98, pp. 446–58.CrossRefGoogle Scholar
  19. 19.
    S Ghosh, L Ma, N Ofori-Opoku, JE Guyer: Model. Simul. Mater. Sci. Eng. 1:1–10. DOI: 10.1088/1361-651x/aa7369.Google Scholar
  20. 20.
    20 S. Pan and M. Zhu: Acta Mater., 2010, vol. 58, pp. 340–52.CrossRefGoogle Scholar
  21. 21.
    W. Wang, S. Luo, and M. Zhu (2016) Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 47, pp. 1355–66.CrossRefGoogle Scholar
  22. 22.
    W. Wang, S. Luo, and M. Zhu (2016) Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 47, pp. 1339–54.CrossRefGoogle Scholar
  23. 23.
    23 S. Chen, G. Guillemot, and C.A. Gandin: Acta Mater., 2016, vol. 115, pp. 448–67.CrossRefGoogle Scholar
  24. 24.
    24 M. Eshraghi, S.D. Felicelli, and B. Jelinek: J. Cryst. Growth, 2012, vol. 354, pp. 129–34.CrossRefGoogle Scholar
  25. 25.
    25 M.F. Zhu, W. Cao, S.L. Chen, C.P. Hong, and Y.A. Chang: J. Phase Equilibria Diffus., 2007, vol. 28, pp. 130–8.CrossRefGoogle Scholar
  26. 26.
    26 R. Chen, Q. Xu, and B. Liu: Comput. Mater. Sci., 2015, vol. 105, pp. 90–100.CrossRefGoogle Scholar
  27. 27.
    27 S.C. Michelic, J.M. Thuswaldner, and C. Bernhard: Acta Mater., 2010, vol. 58, pp. 2738–51.CrossRefGoogle Scholar
  28. 28.
    28 X. Zhang, J. Zhao, H. Jiang, and M. Zhu: Acta Mater., 2012, vol. 60, pp. 2249–57.CrossRefGoogle Scholar
  29. 29.
    29 X.F. Zhang and J.Z. Zhao: J. Cryst. Growth, 2014, vol. 391, pp. 52–8.CrossRefGoogle Scholar
  30. 30.
    30 C. Gu, Y. Wei, X. Zhan, and Y. Li: Sci. Technol. Weld. Join., 2017, vol. 22, pp. 47–58.CrossRefGoogle Scholar
  31. 31.
    K.C.H. Kumar, N. Chakraborti, H. Lukas, O. Bodak, and L. Rokhlin: Ternary Alloy Syst. - Phase Diagrams, Crystallogr. Thermodyn. Data Light Met. Syst. Part 3 Sel. Syst. from Al-Fe-V to Al-Ni-Zr, 2005, pp. 165–77.Google Scholar
  32. 32.
    32 M. Zhu, Z. Li, D. An, Q. Zhang, and T. Dai: ISIJ Int., 2014, vol. 54, pp. 384–91.CrossRefGoogle Scholar
  33. 33.
    33 L. Beltran-Sanchez and D.M. Stefanescu: Metall. Mater. Trans. A, 2004, vol. 35, pp. 2471–85.CrossRefGoogle Scholar
  34. 34.
    34 J. Lipton, M.E. Glicksman, and W. Kurz: Metall. Trans. A, 1987, vol. 18, pp. 341–5.CrossRefGoogle Scholar
  35. 35.
    35 J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57–63.CrossRefGoogle Scholar
  36. 36.
    36 A. Karma and W.-J. Rappel: Phys. Rev. E, 1997, vol. 57, p. 4323.CrossRefGoogle Scholar
  37. 37.
    37 A. Kermanpur, N. Varahraam, E. Engilehei, M. Mohammadzadeh, and P. Davami: Mater. Sci. Technol., 2000, vol. 16, pp. 579–86.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Department of Integrated Systems EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations