Advertisement

Dependence of Lamellar Eutectic Growth with Convection on Boundary Conditions and Geometric Confinement: A Phase-Field Lattice-Boltzmann Study

  • Ang Zhang
  • Jinglian Du
  • Zhipeng Guo
  • Qigui Wang
  • Shoumei Xiong
Article
  • 71 Downloads

Abstract

Simulating eutectic growth with convection is challenging because of the enormous computing demand resulting from the required domain size compared with the eutectic scale. In this study, a phase-field lattice-Boltzmann approach was employed to reproduce the eutectic growth with convection (both natural and forced). To enable and accelerate large-scale simulations, a parallel-adaptive mesh refinement algorithm was developed to combine with this numerical approach. The effects of the boundary conditions and the geometric confinement on the eutectic growth with convection were systematically investigated in the Al-Cu eutectic alloy. Results showed that both boundary conditions and the geometric confinement altered the eutectic evolution by affecting the distributions of the solute and velocity ahead of the eutectic solid/liquid interface. As the first attempt to explore the two factors on the eutectic growth with convection, our thorough investigation lays a foundation for modeling the coupled convection–solute eutectic evolution.

Notes

Acknowledgments

This study was financially supported by the Joint Funds of the National Natural Science Foundation of China (Grant Number U1537202), the Tsinghua-General Motors International Collaboration Project (Grant Number 20153000354), the Tsinghua University Initiative Scientific Research Program (Grant Number 20151080370), and the Tsinghua Qingfeng Scholarship (THQF2018-15). The authors would also like to thank the National Laboratory for Information Science and Technology in Tsinghua University for access to supercomputing facilities.

References

  1. 1.
    J.A. Dantzig and M. Rappaz. Solidification, EPFL Press, Lausanne, 2009.CrossRefGoogle Scholar
  2. 2.
    J. Du and B. Wen, Appl. Mater. Today, 2017, vol. 7, pp. 13-46.CrossRefGoogle Scholar
  3. 3.
    K.A. Jackson and J.D. Hunt, Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 1129-42.Google Scholar
  4. 4.
    V.T. Witusiewicz, U. Hecht and S. Rex, J Cryst Growth, 2012, vol. 353, pp. 17-24.CrossRefGoogle Scholar
  5. 5.
    S. Akamatsu and H. Nguyen-Thi, Acta Mater, 2016, vol. 108, pp. 325-46.CrossRefGoogle Scholar
  6. 6.
    S. Akamatsu, M. Plapp, G. Faivre and A. Karma, Metall Mater Trans A, 2004, vol. 35, pp. 1815-28.CrossRefGoogle Scholar
  7. 7.
    A. Zhang, S. Liang, Z. Guo and S. Xiong, Exp Therm Fluid Sci, 2017, vol. 88, pp. 472-82.CrossRefGoogle Scholar
  8. 8.
    R. Folch and M. Plapp: Phys. Rev. E, 2005, vol. 72, art. no. 011602.Google Scholar
  9. 9.
    A. Zhang, Z. Guo and S. Xiong, China Foundry, 2017, vol. 14, pp. 373-78.CrossRefGoogle Scholar
  10. 10.
    T. Himemiya, K. Ohsasa and T. Saga, Mater Trans, 2010, vol. 51, pp. 110-15.CrossRefGoogle Scholar
  11. 11.
    J.D. Hunt and K.A. Jackson, Trans. Metall. Soc. AIME, 1966, vol. 236, pp. 843-52.Google Scholar
  12. 12.
    R. Siquieri and H. Emmerich, Philos Mag, 2011, ser. 1, vol. 91, pp. 45-73.CrossRefGoogle Scholar
  13. 13.
    J.M. Quenisset and R. Naslain, J Cryst Growth, 1981, ser. 3, vol. 54, pp. 465-74.CrossRefGoogle Scholar
  14. 14.
    V. Baskaran and W.R. Wilcox, J Cryst Growth, 1984, ser. 2, vol. 67, pp. 343-52.CrossRefGoogle Scholar
  15. 15.
    D. Ma, W.Q. Jie, Y. Li and S.C. Ng, Acta Mater, 1998, ser. 9, vol. 46, pp. 3203-10.CrossRefGoogle Scholar
  16. 16.
    S.R. Coriell, G.B. McFadden, W.F. Mitchell, B.T. Murray, J.B. Andrews and Y. Arikawa, J Cryst Growth, 2001, ser. 1–2, vol. 224, pp. 145-54.CrossRefGoogle Scholar
  17. 17.
    A. Zhang, Z. Guo, and S.M. Xiong: Phys. Rev. E, 2018, vol. 97 (5), art. no. 053302.Google Scholar
  18. 18.
    J.H. Lee, S. Liu and R. Trivedi, Metall Mater Trans A, 2005, ser. 11, vol. 36, pp. 3111-25.CrossRefGoogle Scholar
  19. 19.
    J. Du, Z. Guo, A. Zhang, M. Yang, M. Li, and S. Xiong: Sci. Rep-(UK), 2017, vol. 7 (1), art. no. 13600.Google Scholar
  20. 20.
    J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, and S. Xiong: Intermetallics, 2018, vol. 95, 119-29.CrossRefGoogle Scholar
  21. 21.
    J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, F. Liu and S. Xiong, J Alloy Compd, 2019, vol. 775, pp. 322-29.CrossRefGoogle Scholar
  22. 22.
    M.F. Zhu and C.P. Hong: Phys. Rev. B, 2002, vol. 66 (15), art. no. 155428.Google Scholar
  23. 23.
    W.M. Wang, Z.G. Liu, J.M. Liu and X.Y. Chen, J Cryst Growth, 2002, vol. 240, pp. 313-20.CrossRefGoogle Scholar
  24. 24.
    N. Moelans, B. Blanpain and P. Wollants, Calphad, 2008, vol. 32, pp. 268-94.CrossRefGoogle Scholar
  25. 25.
    W.J. Boettinger, J.A. Warren, C. Beckermann and A. Karma, Annu Rev Mater Res, 2002, vol. 32, pp. 163-94.CrossRefGoogle Scholar
  26. 26.
    X. Fan, A. Zhang, Z. Guo, X. Wang, J. Yang, and J. Zou: J. Mater. Sci., 2019, vol. 54 (3), pp. 2680-89.CrossRefGoogle Scholar
  27. 27.
    J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, F. Liu and S. Xiong, Acta Mater, 2018, vol. 161, pp. 35-46.CrossRefGoogle Scholar
  28. 28.
    M. Şerefoǧlu, R.E. Napolitano, and M. Plapp: Phys. Rev. E, 2011, vol. 84, art. no. 011614.Google Scholar
  29. 29.
    T. Takaki, R. Rojas, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe and T. Aoki, J Cryst Growth, 2017, ser. 15, vol. 474, pp. 146-53.CrossRefGoogle Scholar
  30. 30.
    D. Das, M. Roy and T. Basak, Int J Heat Mass Tran, 2017, vol. 106, pp. 356-406.CrossRefGoogle Scholar
  31. 31.
    T. Basak, S. Roy and A.R. Balakrishnan, Int J Heat Mass Tran, 2006, ser. 23-24, vol. 49, pp. 4525-35.CrossRefGoogle Scholar
  32. 32.
    Z. Guo and S.M. Xiong, Comput Phys Commun, 2015, vol. 190, pp. 89-97.CrossRefGoogle Scholar
  33. 33.
    A. Zhang, Z. Guo, and S.M. Xiong: J. Appl. Phys., 2017, vol. 121 (12), art. no. 125101.Google Scholar
  34. 34.
    J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, and S. Xiong: Phys. Rev. Mater., 2018, vol. 2 (8), art. no. 083402.Google Scholar
  35. 35.
    A. Zhang, J. Du, Z. Guo, Q. Wang and S. Xiong, Metallurgical and Materials Transactions B, 2018. vol. 49B(6), pp. 3603-15.CrossRefGoogle Scholar
  36. 36.
    T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva and E.M. Viggen. The Lattice Boltzmann Method Principles and Practice, Springer, Cham, 2017.CrossRefGoogle Scholar
  37. 37.
    W. Miller, I. Rasin and S. Succi, Physica A, 2006, ser. 1, vol. 362, pp. 78-83.CrossRefGoogle Scholar
  38. 38.
    A. Zhang, J. Du, Z. Guo, and S. Xiong: Phys. Rev. E, 2018, vol. 98 (4), art. no. 043301.Google Scholar
  39. 39.
    S. Gyoon Kim, W. Tae Kim, T. Suzuki and M. Ode, J Cryst Growth, 2004, ser. 1, vol. 261, pp. 135-58.CrossRefGoogle Scholar
  40. 40.
    X. Tong, C. Beckermann, A. Karma, and Q. Li: Phys. Rev. E, 2001, vol. 63 (6 Pt 1), art. no. 061601.Google Scholar
  41. 41.
    I. Steinbach and F. Pezzolla, Physica D, 1999, ser. 4, vol. 134, pp. 385-93.CrossRefGoogle Scholar
  42. 42.
    P.L. Bhatnagar, E.P. Gross and M. Krook, Phys. Rev., 1954, ser. 3, vol. 94, pp. 511-25.CrossRefGoogle Scholar
  43. 43.
    S. Chen and G.D. Doolen, Annu Rev Fluid Mech, 1998, ser., vol. 30, pp. 329-64.CrossRefGoogle Scholar
  44. 44.
    Z. Guo, C. Zheng, and B. Shi: Phys. Rev. E, 2002, vol. 65 (4), art. no. 046308.Google Scholar
  45. 45.
    C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma and X. Tong, J Comput Phys, 1999, ser. 2, vol. 154, pp. 468-96.CrossRefGoogle Scholar
  46. 46.
    O. Filippova and D. Hänel, J Comput Phys, 2000, ser. 2, vol. 165, pp. 407-27.CrossRefGoogle Scholar
  47. 47.
    A. Dupuis and B. Chopard: Phys. Rev. E, 2003, vol. 67 (6), art. no. 066707.Google Scholar
  48. 48.
    J. Du, A. Zhang, Z. Guo, M. Yang, M. Li and S. Xiong, ACS Omega, 2017, ser. 12, vol. 2, pp. 8803-09.CrossRefGoogle Scholar
  49. 49.
    W. Kurz and D.J. Fisher. Fundamentals of Solidification, Trans Tech Publications Ltd., Cham, 1992.Google Scholar
  50. 50.
    N. Maraşli. and J.D. Hunt., Acta Mater, 1996, ser. 3, vol. 44, pp. 1085-96.CrossRefGoogle Scholar
  51. 51.
    M. Gündüz and J.D. Hunt, Acta Mater, 1985, ser. 9, vol. 33, pp. 1651-72.CrossRefGoogle Scholar
  52. 52.
    N.Y. Konstantinova, A.R. Kurochkin, A.V. Borisenko, V.V. Filippov and P.S. Popel, Russian Metallurgy (Metally), 2016, ser. 2, vol. 2016, pp. 144-49.CrossRefGoogle Scholar
  53. 53.
    C.J. Vreeman and F.P. Incropera, Int J Heat Mass Tran, 2000, ser. 5, vol. 43, pp. 687-704.CrossRefGoogle Scholar
  54. 54.
    E. Lauga, M. Brenner and H. Stone. In: C. Tropea, A.L. Yarin, J.F. Foss (Eds), Springer Handbook of Experimental Fluid Mechanics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 1219-40.CrossRefGoogle Scholar
  55. 55.
    N. Shevchenko, O. Roshchupkina, O. Sokolova and S. Eckert, J Cryst Growth, 2015, ser. 1, vol. 417, pp. 1-08.CrossRefGoogle Scholar
  56. 56.
    R.S. Maier, R.S. Bernard and D.W. Grunau, Phys Fluids, 1996, ser. 7, vol. 8, pp. 1788-1801.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Materials TechnologyGM Global Powertrain EngineeringPontiacUSA
  3. 3.Key Laboratory for Advanced Materials Processing Technology, Ministry of EducationTsinghua UniversityBeijingChina

Personalised recommendations