Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 32–35 | Cite as

CoCrFeNi Multi-principal Element Alloy Prepared Via Self-propagating High-Temperature Synthesis Plus Investment Casting Method

  • Tao Lu
  • Wenke Chai
  • Ye PanEmail author
  • Ting Dai
  • Dongke Sun
Communication
  • 93 Downloads

Abstract

A CoCrFeNi multi-principal element alloy was successfully prepared via the combination of self-propagating high-temperature synthesis and investment casting. The phase identification, the as-cast microstructure, and the solidification phenomena were investigated. Unlike the dendrite morphology obtained by arc melting, cellular growth in the as-cast alloy was observed as a consequence of the rapid solidification. The solidification process is discussed with regard to the rate of advance of the liquid–solid interface, the equilibrium melting range, and the interface temperature gradient.

Notes

This study was supported by the National Natural Science Foundation of China (Grant Nos. 51671056 and 51728601) and Jiangsu Key Laboratory for Advanced Metallic Materials (Grant No. BM2007204). We thank Kathryn Sole, Ph.D., from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of the earlier draft of this manuscript.

References

  1. 1.
    J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang, Adv. Eng. Mater. 2004, vol. 6, pp. 299-303.CrossRefGoogle Scholar
  2. 2.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George and R. O. Ritchie, Science 2014, vol. 345, pp. 1153-1158.CrossRefGoogle Scholar
  3. 3.
    O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang and P. K. Liaw, Intermetallics 2010, vol. 18, pp. 1758-1765.CrossRefGoogle Scholar
  4. 4.
    A. Takeuchi, K. Amiya, T. Wada, K. Yubuta and W. Zhang, Jom 2014, vol. 66, pp. 1984-1992.CrossRefGoogle Scholar
  5. 5.
    X. Z. Gao, Y. P. Lu, B. Zhang, N. N. Liang, G. Z. Wu, G. Sha, J. Z. Liu and Y. H. Zhao, Acta Mater. 2017, vol. 141, pp. 59-66.CrossRefGoogle Scholar
  6. 6.
    H. Jiang, K. M. Han, X. X. Gao, Y. P. Lu, Z. Q. Cao, M. C. Gao, J. A. Hawk and T. J. Li, Mater. Des. 2018, vol. 142, pp. 101-105.CrossRefGoogle Scholar
  7. 7.
    J. Y. He, W. H. Liu, H. Wang, Y. Wu, X. J. Liu, T. G. Nieh and Z. P. Lu, Acta Mater. 2014, vol. 62, pp. 105-113.CrossRefGoogle Scholar
  8. 8.
    W. H. Liu, Z. P. Lu, J. Y. He, J. H. Luan, Z. J. Wang, B. Liu, Y. Liu, M. W. Chen and C. T. Liu, Acta Mater. 2016, vol. 116, pp. 332-342.CrossRefGoogle Scholar
  9. 9.
    T. T. Zuo, M. C. Gao, L. Z. Ouyang, X. Yang, Y. Q. Cheng, R. Feng, S. Y. Chen, P. K. Liaw, J. A. Hawk and Y. Zhang, Acta Mater. 2017, vol. 130, pp. 10-18.CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, J.W. Yeh, J.F. Sun, J.P. Lin, and K.F. Yao: Adv. Mater. Sci. Eng., 2015, vol. 2015, pp. 1-1.Google Scholar
  11. 11.
    J. W. Yeh, Jom 2015, vol. 67, pp. 2254-2261.CrossRefGoogle Scholar
  12. 12.
    D. B. Miracle and O. N. Senkov, Acta Mater. 2017, vol. 122, pp. 448-511.CrossRefGoogle Scholar
  13. 13.
    Y. Deng, C. C. Tasan, K. G. Pradeep, H. Springer, A. Kostka and D. Raabe, Acta Mater. 2015, vol. 94, pp. 124-133.CrossRefGoogle Scholar
  14. 14.
    Z. Y. Liu, S. Guo, X. J. Liu, J. C. Ye, Y. Yang, X. L. Wang, L. Yang, K. An and C. T. Liu, Scr. Mater. 2011, vol. 64, pp. 868-871.CrossRefGoogle Scholar
  15. 15.
    B. Vishwanadh, N. Sarkar, S. Gangil, S. Singh, R. Tewari, G. K. Dey and S. Banerjee, Scr. Mater. 2016, vol. 124, pp. 146-150.CrossRefGoogle Scholar
  16. 16.
    Z. Q. Fu, W. P. Chen, H. M. Wen, D. L. Zhang, Z. Chen, B. L. Zheng, Y. Z. Zhou and E. J. Lavernia, Acta Mater. 2016, vol. 107, pp. 59-71.CrossRefGoogle Scholar
  17. 17.
    C. Wang, W. Ji and Z. Y. Fu, Adv. Powder Technol. 2014, vol. 25, pp. 1334-1338.CrossRefGoogle Scholar
  18. 18.
    S. Varalakshmi, G. A. Rao, M. Kamaraj and B. S. Murty, J. Mater. Sci. 2010, vol. 45, pp. 5158-5163.CrossRefGoogle Scholar
  19. 19.
    C. F. Tsai, P. W. Wu, P. Lin, C. G. Chao and K. Y. Yeh, Japanese Journal of Applied Physics 2008, vol. 47, pp. 5755-5761.CrossRefGoogle Scholar
  20. 20.
    C. Huang, Y. Z. Zhang, R. Vilar and J. Y. Shen, Mater. Des. 2012, vol. 41, pp. 338-343.CrossRefGoogle Scholar
  21. 21.
    H. Zhang, Y. Z. He and Y. Pan, Scr. Mater. 2013, vol. 69, pp. 342-345.CrossRefGoogle Scholar
  22. 22.
    V. Ocelik, N. Janssen, S. N. Smith and J. T. M. De Hosson, Jom 2016, vol. 68, pp. 1810-1818.CrossRefGoogle Scholar
  23. 23.
    Y. Brif, M. Thomas and I. Todd, Scr. Mater. 2015, vol. 99, pp. 93-96.CrossRefGoogle Scholar
  24. 24.
    J. Joseph, N. Stanford, P. Hodgson and D. M. Fabijanic, Scr. Mater. 2017, vol. 129, pp. 30-34.CrossRefGoogle Scholar
  25. 25.
    V. N. Sanin, V. I. Yukhvid, D. M. Ikornikov, D. E. Andreev, N. V. Sachkova and M. I. Alymov, Doklady Physical Chemistry 2016, vol. 470, pp. 145-149.CrossRefGoogle Scholar
  26. 26.
    W. Y. Huo, H. Zhou, F. Fang, Z. H. Xie and J. Q. Jiang, Mater. Des. 2017, vol. 134, pp. 226-233.CrossRefGoogle Scholar
  27. 27.
    P. Sathiyamoorthi, J. Basu, S. Kashyap, K. G. Pradeep and R. S. Kottada, Mater. Des. 2017, vol. 134, pp. 426-433.CrossRefGoogle Scholar
  28. 28.
    X. Q. Zhou, H. Zhong, D. D. Yu, Z. C. Wen, W. B. Cui and Q. Wang, J. Magn. Magn. Mater. 2017, vol. 442, pp. 67-71.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Tao Lu
    • 1
  • Wenke Chai
    • 1
  • Ye Pan
    • 1
    Email author
  • Ting Dai
    • 1
  • Dongke Sun
    • 2
  1. 1.School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic MaterialsSoutheast UniversityNanjingChina
  2. 2.Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations