Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 312–323 | Cite as

Thermodynamic Model of COREX Melter Gasifier Using FactSage™ and Macro Facility

  • C. Srishilan
  • Ajay Kumar ShuklaEmail author
Article
  • 152 Downloads

Abstract

In the current study, the thermochemical model of the COREX melter gasifier has been developed using the FactSage™ thermodynamic software, and macro programming facility. The melter gasifier was conceptually divided into various equilibrium zones dealing with the reactions happening in the reactor. The coal char and the coke being used are divided among them optimally. The model has been validated with respect to the plant data for the hot-metal, slag, and reducing gas composition. The effects of the variation in the degree of metallization, on the final hot metal, slag, and reducing gas, have been predicted using this model. The variations in the process parameters for the different industrial coal grades used in the COREX plant have been determined. The effects of the volatile, ash, and the moisture contents of the coal on the hot-metal and the reducing gas compositions have been reported.

Notes

Acknowledgment

The authors would like to acknowledge the help extended by the COREX plant, JSW Steel Ltd, Bellary by providing industrial data and the fruitful technical discussions.

References

  1. 1.
    A. Hasanbeigi, M. Arens, and L. Price, Renew. Sustain. Energy Rev., 2014, vol. 33, pp. 645-58.CrossRefGoogle Scholar
  2. 2.
    X. L. Zhou and Z. N. Du, Adv. Mater. Res., 2013, vol. 774-6, pp. 1430-33.CrossRefGoogle Scholar
  3. 3.
    A. Chatterjee, Beyond the Blast Furnace 1st ed. CRC Press, Boca Raton, 1993, pp. 127-36.Google Scholar
  4. 4.
    M. K. Shin, S. D. Lee, S. H. Joo, and J. K. Yoon, ISIJ Int., 1993, vol. 33, pp. 369-75.CrossRefGoogle Scholar
  5. 5.
    S. C. Koria, M. K. Barui, and L. K. Pandey, Scand. J. Metall., 1999, vol. 28, pp. 17-24.Google Scholar
  6. 6.
    S. C. Koria and M. K. Barui, Ironmak. Steelmak., 2000, vol. 27, pp. 348-54.CrossRefGoogle Scholar
  7. 7.
    C. Srishilan and A. K. Shukla, Metall. Mater. Trans. B, 2018, vol. 49, pp. 388-98.CrossRefGoogle Scholar
  8. 8.
    S. C. Lee, M. K. Shin, S. Joo, and J. K. Yoon, ISIJ Int., 1999, vol. 39, pp. 319-28.CrossRefGoogle Scholar
  9. 9.
    S. C. Lee, M. K. Shin, S. Joo, and J. K. Yoon, ISIJ Int., 2000, vol. 40, pp. 1073-79.CrossRefGoogle Scholar
  10. 10.
    S. Pal and A. K. Lahiri, Metall. Mater. Trans. B, 2003, vol. 34, pp. 103-14CrossRefGoogle Scholar
  11. 11.
    S. Pal and A. K. Lahiri, ISIJ Int., 2006, vol. 46, pp. 58-64.CrossRefGoogle Scholar
  12. 12.
    S. C. Barman, K. P. Mrunmaya, and M. Ranjan, J. Iron Steel Res. Int., 2011, vol. 18, pp. 20-4.CrossRefGoogle Scholar
  13. 13.
    X. Liu, G. Pan, G. Wang, and Z. Wen, Energy and Fuels, 2011, vol. 25, pp. 5729-35.CrossRefGoogle Scholar
  14. 14.
    G. Pan, X. L. Liu, and Z. Wen, Adv. Mater. Res., 2011, vol. 228-229, 930-36.CrossRefGoogle Scholar
  15. 15.
    G. Pan, Z. Wen, X. L. Liu, Y. K. Li, K. C. Zheng, and W. F. Wu, Ironmak. Steelmak., 2015, vol. 42, pp. 489-97.CrossRefGoogle Scholar
  16. 16.
    K. Du, S. Wu, M. Kou, W. Shen, and Z. Zhang, Steel Res. Int., 2014, vol. 85, pp. 466-76.CrossRefGoogle Scholar
  17. 17.
    L.H. Han, Z. G. Luo, H. Zhou, Z. S. Zou, and Y.Z. Zhang, J. Iron Steel Res. Int., 2015, vol. 22, pp. 304-10.CrossRefGoogle Scholar
  18. 18.
    B. Srivastava, S. K. Roy, and P. K. Sen, Metall. Mater. Trans. B, 2010, vol. 41, pp. 935-39.CrossRefGoogle Scholar
  19. 19.
    P. Sen, C. Biswas, P. Das, and G. G. Roy, Trans. Inst. Min. Metall. 2015, vol. 124, pp. 175-83.Google Scholar
  20. 20.
    A. Kadrolkar, S. K. Roy, and P. K. Sen, Metall. Mater. Trans. B, 2012, vol. 43, pp. 173-85.CrossRefGoogle Scholar
  21. 21.
    O. Almpanis-Lekkas, B. Weiss, and W. Wukovits, J. Clean. Prod., 2015, vol. 111, pp. 1-11.Google Scholar
  22. 22.
    B. Kumar, S. Mishra, G. G. Roy, and P. K. Sen, Steel Res. Int., 2017, vol. 88, pp. 1-15.CrossRefGoogle Scholar
  23. 23.
    P. Tanay, Maters Thesis, Indian Institute of Technology, 2014, pp. 6–7.Google Scholar
  24. 24.
    D. Thompson and B.B. Argent, Trans. Institutions Min. Metall., 2007, vol. 116, pp. 115-22.Google Scholar
  25. 25.
    C. CRCT-Thermfact Inc. and G. GTT Technologies, FactSage Version 6.4 (n.d.).Google Scholar
  26. 26.
    I. H. Jung, S. A. Decterov, and A. D. Pelton, Metall. Mater. Trans. B 2004, vol. 35, pp. 493-507.CrossRefGoogle Scholar
  27. 27.
    C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. B. Kang, J. Melançon, A. D. Pelton, C. Robelin, and S. Petersen, Calphad Comput. Coupling Phase Diagrams Thermochem., 2009, vol. 33, pp. 295-311.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology, Madras (IIT Madras)ChennaiIndia

Personalised recommendations