Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 471–479 | Cite as

Titanium Extraction from Spent Selective Catalytic Reduction Catalysts in a NaOH Molten-Salt System: Thermodynamic, Experimental, and Kinetic Studies

  • Qijun Zhang
  • Yufeng WuEmail author
  • Tieyong Zuo
Article
  • 66 Downloads

Abstract

In this study, sodium hydroxide was used as an alkali reagent in roasting spent selective catalytic reduction (SCR) catalysts for titanium extraction. The thermodynamic analysis of the roasting process is discussed in terms of process design. The effects of various roasting parameters, such as the mass ratio of NaOH-to-SCR, temperature, and time, on the extraction efficiency of titanium were investigated; under the optimum parameters of 1.8:1, 550 °C, and 10 minutes, the titanium extraction yield reached 97.8 pct. The roasting kinetics of titanium extraction were also studied. The kinetics of titanium extraction follow the Avrami model, which is expressed as follows: \( - \ln \left( {1 - x} \right) = K_{0} C_{{m_{\text{NaOH}} /m_{\text{SCR}} }}^{ - 2.012} \exp \left( { - \frac{4120}{8.314T}} \right)t \), and the overall roasting process is controlled by diffusion in the solid state, with an activation energy (Ea) of 4.12 kJ/mol.

Notes

Acknowledgments

This research was financially supported by the Beijing Natural Science Foundation (Grant No. 2174067) and the Fundamental Research Fund Project of Beijing University of Technology (Grant No. 033000546317501).

Supplementary material

11663_2018_1475_MOESM1_ESM.doc (266 kb)
The XPS results for the spent SCR, XRD patterns of the molten-salt products with a NaOH-to-SCR mass ratio of 3.0:1 and the plots of the chemical control model and diffusion through the product layer control model of titanium extraction may be found in the Supporting Information. Supplementary material 1 (DOC 266 kb)

References

  1. 1.
    T. Xue, L. Wang, T. Qi, J. Chu, J. Qu, and C. Liu: Hydrometallurgy, 2009, vol. 95, pp. 22–27.CrossRefGoogle Scholar
  2. 2.
    A. Calia, M. Lettieri, M. Masieri, S. Pal, A. Licciulli, and V. Arima: J. Cleaner Produc., 2017, vol. 165, pp. 1036–47.CrossRefGoogle Scholar
  3. 3.
    F.C. Meng, T.Y. Xue, Y.H. Liu, G.Z. Zhang, and T. Qi: Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 1696–705.CrossRefGoogle Scholar
  4. 4.
    D.-S. Chen, L.-S. Zhao, T. Qi, G.-P. Hu, H.-X. Zhao, J. Li, and L.-N. Wang: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 3076–82.CrossRefGoogle Scholar
  5. 5.
    S. Parirenyatwa, L. Escudero-Castejon, S. Sanchez-Segado, Y. Hara, and A. Jha: Hydrometallurgy, 2016, vol. 165, pp. 213–26.CrossRefGoogle Scholar
  6. 6.
    F.B. Zeng, D.M. Luo, Z. Zhang, B. Liang, X.Z. Yuan, and L. Fu: J. Alloys Compd., 2016, vol. 670, pp. 249–57.CrossRefGoogle Scholar
  7. 7.
    B. Liang, C. Li, C.G. Zhang, and Y.K. Zhang: Hydrometallurgy, 2005, vol. 76, pp. 173–79.CrossRefGoogle Scholar
  8. 8.
    J. Yang, S. Lei, J. Yu, and G. Xu: J. Environ. Chem. Eng., 2014, vol. 2, pp. 1007–10.CrossRefGoogle Scholar
  9. 9.
    X. Li, C, Liu, X. Li, Y. Peng, and J. Li: Catal. Commun., 2017, vol. 100, pp. 112–16.CrossRefGoogle Scholar
  10. 10.
    M. Li, B. Liu, X.R. Wang, X.B. Yu, S.L. Zheng, H. Du, D. Dreisinger, and Y. Zhang: Chem. Eng. J., 2018, vol. 342, pp. 1–8.CrossRefGoogle Scholar
  11. 11.
    Y.D. Xue, Y. Zhang, Y. Zhang, S.L. Zheng, Y. Zhang, and W. Jin: Chem. Eng. J., 2017, vol. 325, pp. 544–53.CrossRefGoogle Scholar
  12. 12.
    Y. Chen, X. Zong, and C. Wang: Electric Power, 2016, vol. 49, pp. 151–55. (in Chinese).Google Scholar
  13. 13.
    D.S. Chen, L.S. Zhao, Y.H. Liu, T. Qi, J.C. Wang, and L.N. Wang: J. Hazard. Mater., 2013, vols. 244–245, pp. 588–95.CrossRefGoogle Scholar
  14. 14.
    D. Wang, J.L. Chu, J. Li, T. Qi, and W.J. Wang: Powder Technol., 2012, vol. 232, pp. 99–105.CrossRefGoogle Scholar
  15. 15.
    F. Riedewald and M. Sousa-Gallagher: MethodsX, 2015, vol. 2, pp. 100–06.CrossRefGoogle Scholar
  16. 16.
    K. Sugiura, K. Minami, M. Yamauchi, S. Morimitsu, and K. Tanimoto: J. Power Sources, 2007, vol. 171, pp. 228–36.CrossRefGoogle Scholar
  17. 17.
    Y.H. Liu, F.C. Meng, F.Q. Fang, W.J. Wang, J.L. Chu, and T. Qi: Dyes Pigments, 2016, vol. 125, pp. 384–91.CrossRefGoogle Scholar
  18. 18.
    L. Flandinet, F. Tedjar, V. Ghetta, and J. Fouletier: J. Hazard. Mater., 2012, vols. 213–214, pp. 485–90.CrossRefGoogle Scholar
  19. 19.
    Q.J. Zhang, Y.F. Wu, and T.Y. Zuo: ACS Sustain. Chem. Eng., 2018, vol. 6, pp. 3091–101.CrossRefGoogle Scholar
  20. 20.
    Q.J. Zhang, F. Yu, Y.F. Wu, Y.-N. Zhang, and T.Y. Zuo: ACS Sustain. Chem. Eng., 2016, vol. 4, pp. 1794–803.CrossRefGoogle Scholar
  21. 21.
    S.W. Shin, J.Y. Lee, K.S. Ahn, S.H. Kang, and J.H. Kim: J. Phys. Chem. C, 2015, vol. 119, pp. 13375–83.CrossRefGoogle Scholar
  22. 22.
    M.S. Zhu, C.Y. Zhai, L.Q. Qiu, C. Lu, A.S. Paton, Y.K. Du, and M.C. Goh: ACS Sustain. Chem. Eng., 2015, vol. 3, pp. 3123–29.CrossRefGoogle Scholar
  23. 23.
    Z.B. Dong, D.Y. Ding, T. Li, and C.Q. Ning: Appl. Surf. Sci., 2018, vol. 436, pp. 125–33.CrossRefGoogle Scholar
  24. 24.
    Y.M. Hunge, A.A. Yadav, M.A. Mahadik, R.N. Bulakhe, J.J. Shim, V.L. Mathe, and C.H. Bhosale: Opt. Mater., 2018, vol. 76, pp. 260–70.CrossRefGoogle Scholar
  25. 25.
    Q. Li, Z. Liu, and Q. Liu: Ind. Eng. Chem. Res., 2014, vol. 53, pp. 2956–62.CrossRefGoogle Scholar
  26. 26.
    L. Schlur, S. Begin-Colin, P. Gilliot, M. Gallart, G. Carre, S. Zafeiratos, N. Keller, V. Keller, P. Andre, J.M. Greneche, B. Hezard, M.H. Desmonts, and G. Pourroy: Mater. Sci. Eng. C, 2014, vol. 38, pp. 11–19.CrossRefGoogle Scholar
  27. 27.
    J. Wang, X. Huang, L. Wang, Q. Wang, Y. Yan, N. Zhao, D. Cui, and Z. Feng: Hydrometallurgy, 2017, vol. 171, pp. 312–19.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Institute of Circular EconomyBeijing University of TechnologyBeijingPeople’s Republic of China

Personalised recommendations