Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 578–584 | Cite as

Influence of Obstruction at Gas-Injection Nozzles (Number and Position) in RH Degasser Process

  • Luis Carlos Trindade
  • Johne Jesus M. Peixoto
  • Carlos Antônio da Silva
  • Eduardo Prado Baston
  • Fabiano Luiz Naves
  • Juan Canellas B. Neto
  • David Tiago de Faria
  • Renata C. Z. Lofrano
  • Alexandre Bôscaro FrançaEmail author
Article
  • 102 Downloads

Abstract

One of the main problems that affects Ruhrstahl-Heraeus (RH) degasser circulation rate is the obstruction of the gas-injection nozzles. This study aims to elucidate the effects of obstructions in quantity and location using a physical model that depicts 16 injection nozzles on the up-leg distributed symmetrically in 2 rings (8 nozzles/ring). We simulated six, symmetric and nonsymmetric, obstruction conditions to gas flow. The gas-flow rate was varied from 30 to 130 NL/min. The results for symmetric obstructions when the gas-flow rate is kept constant, indicates that the circulation rate in the equipment does not significantly change. However, when these obstructions are non-symmetric, the circulation rate varies drastically, even when the gas-flow rate is kept constant. The analysis of the experimental data generated from this study allowed to determine an equation for the circulation rate that takes into consideration the number and distribution of blocked nozzles.

Nomenclature

RH

Ruhrstahl-Heraeus Degasser

\( \beta \)

scale factor between model and industrial equipment

\( Q_{\text{m}} \)

cold model flow rate

\( Q_{\text{e}} \)

industrial equipment flow rate

\( F_{ \exp } \)

expansion gas coefficient

A

area under first peak of the curve (Figure 2)

∆C

increment in tracer concentration after stabilization (Figure 2)

\( Q \)

circulation flow rate

\( G \)

injected gas-flow rate

\( a\, b\, e m \)

constants to the Eq. [3]

\( \psi \)

deviation function between the centroid of the polygon formed by the unclogged nozzles and the center of the up-leg

\( \tau \)

Fraction of Nozzles Obstructed

\( K \)

adjust function

\( \lambda \)

exponential factor of \( \psi \)

\( n \)

exponential factor of \( \tau \)

\( r \)

up-leg radius

\( \overline{AC} \)

distance from the centroid of the polygon (\( C(c_{x} ,c_{y} ) \)) formed by the connection of the injection nozzles in operation in the equipment to the center of the circle (\( A(r_{x} = r, r_{y} = r) \)) of the up-leg

\( A^{\prime\prime} \)

area of the formed polygon

\( c_{x} \) e \( c_{y} \)

coordinates of the C point of the centroid of the formed polygon

\( n_{p} \)

number of sides of the polygon

\( \theta\,{\text{and}}\,\kappa \)

Michaelis-Menten constants (Eq. [11])

\( N \)

number of nozzle (Eq. [11])

References

  1. 1.
    Toshihiko, E. M. I., ISIJ International, 2015, Vol. 55, pp. 36–66.CrossRefGoogle Scholar
  2. 2.
    D. Mukherjee, A. K. Shukla, D. G. Senk, Metall. Mater. Trans. B, 2017, Vol. 48B, pp. 763-771CrossRefGoogle Scholar
  3. 3.
    H. Ling, F. Li, L. Zhang, A.N. Conejo, Metall. and Mater. Trans. B, 2017, Vol. 47, pp. 1950-1961Google Scholar
  4. 4.
    V. Seshadri, C. A. da Silva, I. A. da Silva, G. A. Vargas, P. S. B. Lascosqui, Ironmaking and Steelmaking, 2006, Vol. 33, pp.34-38.CrossRefGoogle Scholar
  5. 5.
    Park Y-G., Yi K-W., Ahn S-B.: ISIJ Int., 2001, Vol. 41, pp. 403–409.CrossRefGoogle Scholar
  6. 6.
    L. Lin, Y. Bao, F. Yue, L. Zhang, and H. Ou, Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 483–89.CrossRefGoogle Scholar
  7. 7.
    Ono K., Yanagida, M., Katoh, T., Okamoto, T., Electrical Furnace Steel, 1981, vol. 52, pp. 149 – 157.Google Scholar
  8. 8.
    Seshadri, V., Costa, S.L.S., ISIJ International, 1986, vol. 26, p. 133 – 138.CrossRefGoogle Scholar
  9. 9.
    N. Kurokawa: Proc. of 5th Conference for License of RH Process, Thyssen Stahl Aktiengesellschaft, Vienna, Duisburg, (1987), Apud: Park, Y-G., Yi K-W., Ahn SB., ISIJ International, 2000, Vol.40, pp. 749-755.CrossRefGoogle Scholar
  10. 10.
    Kuwabara, T., Umezawa, K., Mori, K. & Watanabe, H., ISIJ International, 1988, vol. 28, pp. 305-314.CrossRefGoogle Scholar
  11. 11.
    C.A. da Silva, I.A. da Silva, E.M. de Castro Martins, V. Seshadri, C.A. Perim, G.A. Vargas Filho: Ironmak. Steelmak., 2004, Vol 31, pp. 37-42.CrossRefGoogle Scholar
  12. 12.
    NEVES, Leonardo; Masters Dissertation (Federal University of Minas Gerais, Engeneering School), 2008. (http://www.bibliotecadigital.ufmg.br/dspace/handle/1843/MAPO-7QJPTK)
  13. 13.
    Zhu, B.; Liu, Q.; Zhao, D.; Ren, S.; Xu, M.; Yang, B.; Hu, B.; Steel Research Int., 2016, V.87, PP. 136-145.CrossRefGoogle Scholar
  14. 14.
    Park, Y-G., Yi K-W., Ahn S-B, ISIJ International, 2001, Vol. 41, pp. 403–409.CrossRefGoogle Scholar
  15. 15.
    D.C. Montgomery: Design and Analysis of Experiments, 8th ed., Whurr Publishing, 2013, chapter 11.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Luis Carlos Trindade
    • 1
  • Johne Jesus M. Peixoto
    • 2
  • Carlos Antônio da Silva
    • 2
  • Eduardo Prado Baston
    • 1
  • Fabiano Luiz Naves
    • 1
  • Juan Canellas B. Neto
    • 1
  • David Tiago de Faria
    • 1
  • Renata C. Z. Lofrano
    • 1
  • Alexandre Bôscaro França
    • 1
    Email author
  1. 1.Federal University of São João Del-ReiOuro BrancoBrazil
  2. 2.Federal University of Ouro PretoOuro PretoBrazil

Personalised recommendations