Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 304–311 | Cite as

Effect of B2O3 Addition on Electrical Conductivity and Structural Roles of CaO-SiO2-B2O3 Slag

  • Pan Zhang
  • Junhao LiuEmail author
  • Zhi WangEmail author
  • Guoyu Qian
  • Wenhui Ma
Article

Abstract

The effect of B2O3 addition on electrical conductivity of CaO-SiO2-B2O3 slag was investigated using the four-electrode method. The slag structure was determined from Raman and nuclear magnetic resonance spectra. The experimental results show that the electrical conductivity, as the B2O3 content in the slag increased from 0 to 10 pct, monotonously increases from 0.0769 to 0.2642 Ω−1 cm−1 at temperatures ranging from 1783 to 1873 K (1510 °C to 1600 °C). The effects of temperature on electrical conductivity obeyed the Arrhenius law, and the electrical conductivity increased as the temperature increased. The Raman spectra results indicated that addition of B2O3 led to an increase of Q3(Si) at the cost of Q2(Si), which will increase the degree of polymerization of the slag. 11B nuclear magnetic resonance spectra showed that both BO3 trigonal and BO4 tetrahedral structures increased with the increasing B2O3 content. There was a competitive effect between the presence of these structures and an enhanced degree of polymerization of slags in the networks, which resulted in the increased electrical conductivity of the slag. A structure–electrical conductivity model for CaO-SiO2-B2O3 slag was established.

Notes

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (51704271 and U1702251) and National Key R&D Program of China (2018YFC1901801). The authors thank Kathryn Sole, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a previous draft of this manuscript.

References

  1. 1.
    R. Winand: Proc. Conf. Extraction Metallurgy, vol. 81, IMM, London, 1981, pp. 20–33.Google Scholar
  2. 2.
    D.R. Sadoway: U.S. Patent 5, 1993, 185.Google Scholar
  3. 3.
    3. G.H. Zhang, W.W. Zheng, and S.Q. Jiao: ISIJ Int., 2017, vol. 57, pp. 2091-2096.CrossRefGoogle Scholar
  4. 4.
    4. A.E. Martin and G. Derge: Trans. AIME, 1943, vol. 154, pp. 104.Google Scholar
  5. 5.
    5. S. Seetharaman, K. Mukai, and D. Sichen: Steel Res. Int., 2005, vol. 76, pp. 267-278.CrossRefGoogle Scholar
  6. 6.
    6. R.E. Aune, M. Hayashi, and S. Sridhar: Ironmaking and Steelmaking, 2005, vol. 32, pp. 141-150.CrossRefGoogle Scholar
  7. 7.
    7. J.H. Park and D.J. Min: J. Non-Cryst. Solids, 2004, vol. 337, pp. 150-156.CrossRefGoogle Scholar
  8. 8.
    8. J.H. Park, D.J. Min and H.S. Song: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 269-275.CrossRefGoogle Scholar
  9. 9.
    9. B.O. Mysen: Eur. J. Mineral., 2003, vol. 15, pp. 781-802.CrossRefGoogle Scholar
  10. 10.
    10. J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 723-29.CrossRefGoogle Scholar
  11. 11.
    11. J.H. Park, D.J. Min, and H.S. Song: ISIJ Int., 2002, vol. 42, pp. 344 -51.CrossRefGoogle Scholar
  12. 12.
    D. Giordano, J.K. Russell, and D.B. Dingwell: Earth Planet. Sci. Lett., 2008, vol. 271, pp. 123–34.Google Scholar
  13. 13.
    13. J.H. Park, H. Kim, and D.J. Min: Metall. Mater. Trans. B, 2008, vol. 39B pp. 150-53.CrossRefGoogle Scholar
  14. 14.
    14. J.H. Park and D.J. Min: ISIJ Int., 2007, vol. 47, pp. 1368–69.CrossRefGoogle Scholar
  15. 15.
    15. D.R. Neuvill: Chem. Geol., 2006, vol. 229, pp. 28-41.CrossRefGoogle Scholar
  16. 16.
    16. H. Kim, W.H. Kim, J.H. Park, and D.J. Min: Steel Res. Int., 2010, vol. 81, pp. 17–24.CrossRefGoogle Scholar
  17. 17.
    17. P. Richet: J. Non-Cryst. Solids, 2009, vol. 355, pp. 628-35.CrossRefGoogle Scholar
  18. 18.
    18. J.H. Liu, G.H. Zhang, Y.D. Wu, and K.C. Chou: Metall. Mater. Trans. B, 2016, vol. 47(1), pp. 798-803;CrossRefGoogle Scholar
  19. 19.
    19. J.H. Liu, G.H. Zhang, and K.C. Chou: ISIJ Int., 2015, vol. 55, pp. 2325-31.CrossRefGoogle Scholar
  20. 20.
    20. J.H. Liu, G.H. Zhang, and K.C. Chou: Can. Metall. Q., 2015, vol. 54, pp. 170-77.CrossRefGoogle Scholar
  21. 21.
    21. M. Barati and K.S. Coley: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 41-9.CrossRefGoogle Scholar
  22. 22.
    22. P. McMillan: Am. Mineral., 1984, vol. 69, pp. 622-44.Google Scholar
  23. 23.
    23. J.D. Frantz and B.O. Mysen: Chem. Geol., 1995, vol. 121, pp. 155-76.CrossRefGoogle Scholar
  24. 24.
    24. B.O. Mysen and D.R. Neuville: Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 325-42.CrossRefGoogle Scholar
  25. 25.
    25. D.R. Neuville, D.D. Ligny, and G.S. Henderson: Rev. Mineral. Geochem., 2014, vol. 78, pp. 509-41.CrossRefGoogle Scholar
  26. 26.
    26. Y. Tsunawaki, N. Iwamoto, T. Hattori, and A. Mitsuishi: J. Non-Cryst. Solids, 1981, vol. 44, pp. 369-78.CrossRefGoogle Scholar
  27. 27.
    27. Y.Q. Sun and Z.T. Zhang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1549-54.CrossRefGoogle Scholar
  28. 28.
    28. F.A. Seifert, B.O. Mysen, and D. Virgo: Am. Miner., 1982, vol. 67, pp. 696-717.Google Scholar
  29. 29.
    29. J. Tan, S.R. Zhao, W.F. Wang, G. Davies, and X.X. Mo: Mater. Sci. Eng. B, 2004, vol. 106, pp. 295-99.CrossRefGoogle Scholar
  30. 30.
    30. G. Padmaja and P. Kistaiah: J. Phys. Chem. A, 2009, vol. 113, pp. 2397-2402CrossRefGoogle Scholar
  31. 31.
    31. B.N. Meera and J. Ramakrishna: J. Non-Cryst. Solids, 1993, vol. 159, pp. 1-21CrossRefGoogle Scholar
  32. 32.
    32. P. McMillan: Am. Miner., 1984, vol. 69, pp. 622-644Google Scholar
  33. 33.
    33. D.W. Matson, S.K. Sharma and J.A. Philpotts: J. Non-Cryst. Solids, 1983, vol. 58, pp. 323-352.CrossRefGoogle Scholar
  34. 34.
    34. K. Fukumi, J. Hayakawa and T. Komiyama: J. Non-Cryst. Solids, 1990, vol. 119, pp. 297-302.CrossRefGoogle Scholar
  35. 35.
    35. B.O. Mysen and J.D. Frantz: Am. Miner., 1993, vol. 78, pp. 699-709.Google Scholar
  36. 36.
    36. J.L. You, G.C. Jiang and K.D. Xu: J. Non-Cryst. Solids, 2001, vol. 282, pp. 125-131.CrossRefGoogle Scholar
  37. 37.
    37. B.O. Mysen and J.D. Frantz: Contrib. Miner. Petrol., 1994, vol. 117, pp. 1-14.CrossRefGoogle Scholar
  38. 38.
    38. B.O. Mysen, L.W. Finger, D. Virgo and F.A. Seifert: Am. Miner., 1982, vol. 67, pp. 686-695.Google Scholar
  39. 39.
    39. J.D. Frantz and B.O. Mysen: Chem. Geol., 1995, vol. 121, pp. 155-76.CrossRefGoogle Scholar
  40. 40.
    40. B.O. Mysen and J.D. Frantz: Am. Mineral., 1993, vol. 78, pp. 699-709.Google Scholar
  41. 41.
    41. Y.Q. Wu, G.C. Jiang, J.L. You, H.Y. Hou, and H. Chen: Acta Phys. Sin., 2005, vol. 54, pp. 961-66.Google Scholar
  42. 42.
    42. J. Kline, M. Tangstad, and G. Tranell: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 62-73.CrossRefGoogle Scholar
  43. 43.
    43. L.S. Du and J.F. Stebbins: J. Non-Cryst. Solids, 2003, vol. 315, pp. 239-55.CrossRefGoogle Scholar
  44. 44.
    44. S.K. Lee, H.N. Kim, B.H. Lee, H.I. Kim, and E.J. Kim: J. Phys. Chem. B, 2010, vol. 114, pp. 412-20.CrossRefGoogle Scholar
  45. 45.
    45. L.S. Du and J.F. Stebbins: J. Phys. Chem. B, 2003, vol. 107, pp. 10063-76.CrossRefGoogle Scholar
  46. 46.
    46. E. Thibodeau and I. Jung: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 355-83.CrossRefGoogle Scholar
  47. 47.
    47. A.E. Martin and G. Gerge: Trans. Inst. Min. Mrtall, 1943, vol. 154, pp. 104-115.Google Scholar
  48. 48.
    48. M.T. Simnad and G. Derge: J. Chem. Phys, 1953, vol. 21, pp. 933-34.CrossRefGoogle Scholar
  49. 49.
    49. M.T. Simnad, G. Derge and I. George, Trans. Inst. Min. Mrtall, 1954, vol. 200, pp. 1386-90.Google Scholar
  50. 50.
    50. D.A. Dukelow and G. Derge: Trans. Inst. Min. Mrtall, 1960, vol. 218, pp.136-139.Google Scholar
  51. 51.
    51. E.A. Dancy and G. Derge: Trans. Inst. Min. Mrtall, 1966, vol. 236, pp. 1642-48.Google Scholar
  52. 52.
    52. G.H. Zhang and K.C. Chou: J. Iron Steel Res. Int., 2011, vol. 18, pp. 13-16.CrossRefGoogle Scholar
  53. 53.
    53. F. Fincham and F.D. Richardson: Proc. R. Soc. Lond. A, 1954, vol. 223, pp. 40-62.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  2. 2.National Engineering Laboratory for Vacuum Metallurgy, Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingP.R. China

Personalised recommendations