Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 395–406 | Cite as

Experimental Study on the Thermodynamics of the CaO-SiO2-Ce2O3 System at 1873 K

  • Zengwu Zhao
  • Xuexin Chen
  • Björn Glaser
  • Baijun YanEmail author


The phase relations in the CaO-SiO2-Ce2O3 system under the reducing atmosphere at 1873 K were determined by the conventional equilibrium and quenching method combined with scanning electron microscopy-electron probe microanalysis (SEM-EPMA) and X-ray diffraction (XRD) measurements on the quenched samples. Based on these analyses, a large part of the isothermal phase diagram was constructed. Furthermore, the thermodynamic activities of Ce2O3 in the melts at 1873 K were measured by the chemical equilibrium method. Using the measured activity data, an empirical formula to estimate the activity coefficient of Ce2O3 was proposed based on the regular solution model. It was found that, for the melts with the same Ce2O3 contents, the thermodynamic activities of Ce2O3 increase gradually with the rise of basicity (the ratio of CaO to SiO2) of the melts. This implies that, from the thermodynamic point of view, the increase of basicity is favorable to the enrichment and precipitation of Ce-containing mineral phases.



The financial support of Projects 51464040, 51534001, and 51774025 from the National Natural Science Foundation of China and the open project for key basic research of the Inner Mongolia Autonomous Region (20140201) is gratefully acknowledged.


  1. 1.
    A. Golev, M. Scott, P.D. Erskine, S.H. Ali, and G.R. Ballantyne: Res. Policy, 2014, vol. 41, pp. 52–59.CrossRefGoogle Scholar
  2. 2.
    K. Binnemans, P.T. Jones, B. Blanpain, T. Van Gerven, and Y. Pontikes: J. Cleaner Production, 2015, vol. 99, pp. 17–38.CrossRefGoogle Scholar
  3. 3.
    T.H. Le, A. Malfliet, B. Blanpain, and M. Guo: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1736–44.CrossRefGoogle Scholar
  4. 4.
    T. Elwert, D.I.D. Goldmann, T. Schirmer, and K. Strauß: Chem. Ingen. Techn., 2016, vol. 86, pp. 840–47.CrossRefGoogle Scholar
  5. 5.
    T. Müller and B. Friedrich: J. Power Sources, 2006, vol. 158, pp. 1498–1509.CrossRefGoogle Scholar
  6. 6.
    K. Tang, A. Ciftja, C. van der Eijk, S. Wilson, and G. Tranell: J. Min. Metall. Sect. B, 2013, vol. 49, pp. 233–36.CrossRefGoogle Scholar
  7. 7.
    S. Zec, S. Bošković, M. Hrovat, and M. Kosec: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 523–26.CrossRefGoogle Scholar
  8. 8.
    S. Kawamura, M. Higuchi, J.H. Kaneko, S. Nishiyama, J. Haruna, S. Saeki, and M. Furusaka: Cryst. Growth Des., 2009, vol. 9, pp. 1470–73.CrossRefGoogle Scholar
  9. 9.
    R. Kitano and K. Morita: Proc. 10th Int. Conf. on Molten Slags, Fluxes and Salts (MOLTEN16).Google Scholar
  10. 10.
    A.C. Tas and M. Akinc: J. Am. Ceram. Soc., 1994, vol. 77, pp. 2953–60.CrossRefGoogle Scholar
  11. 11.
    E.T. Turkgogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, 1980.Google Scholar
  12. 12.
    Dong et al.: CALPHAD, 2013, vol. 42, pp. 38–50.CrossRefGoogle Scholar
  13. 13.
    Li et al.: CALPHAD, 2013, vol. 43, pp. 124–32.CrossRefGoogle Scholar
  14. 14.
    Kim et al.: CALPHAD, 2016, vol. 55, pp. 113–33.CrossRefGoogle Scholar
  15. 15.
    T. Mathews et al.: J. Alloys Compds., 1995, vol. 228, pp. 1–5.CrossRefGoogle Scholar
  16. 16.
    D. Wang, Q. Shu, B. Yan, L. Wu, J. Wang, and Y. Dong: J. Am. Ceram. Soc., 2017, vol. 100, pp. 4912–27.CrossRefGoogle Scholar
  17. 17.
    L.S. Darken: Trans. TMS-AIME, 1967, vol. 239, pp. 80–90.Google Scholar
  18. 18.
    S. Ban-ya: ISIJ Int., 1993, vol. 33, pp. 2–11.CrossRefGoogle Scholar
  19. 19.
    J. Lumsden: in Physical Chemistry of Process Metallurgy, G.R. St Pierre, ed., AIME, Interscience, New York, NY, 1961, Part I, p. 165.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Zengwu Zhao
    • 1
  • Xuexin Chen
    • 2
  • Björn Glaser
    • 3
  • Baijun Yan
    • 2
    Email author
  1. 1.Inner Mongolia Key Laboratory for Utilization of Bayan Obo Multi-Metallic Resources: Elected State Key LaboratoryInner Mongolia University of Science and TechnologyBaotouChina
  2. 2.Department of Physical Chemistry of MetallurgyUniversity of Science and Technology BeijingBeijingChina
  3. 3.Department of Materials Science and EngineeringRoyal Institute of TechnologyStockholmSweden

Personalised recommendations