Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 429–437 | Cite as

Neutron Diffraction and Neutron Radiography Investigation into Powder Sintering of Ti/Al and TiH2/Al Compacts

  • Gang ChenEmail author
  • Klaus-Dieter Liss
  • Peng CaoEmail author
  • Xin Lu
  • Xuanhui Qu
Article

Abstract

Sintering behaviors of two types of powder compact, i.e., Ti/Al and TiH2/Al, under vacuum were studied using in situ neutron diffraction, in situ thermal dilatometric measurement, and ex situ neutron radiography. Their densification, microstructure, hydrogen concentration, and phase transformation features were compared. The results indicate that the predominant phase identified in the samples sintered from both compacts is γ-TiAl phase with minor Ti3Al phase. Dehydrogenation of TiH2 plays a decisive role in the sintering behavior and the resultant microstructure. In comparison with the Ti/Al compact, dehydrogenation occurring in the TiH2/Al compact leads to a higher level of densification and faster sintering kinetics.

Notes

Acknowledgments

GC gratefully acknowledges the funding from National Natural Science Foundation of China (Contract No.: 51604228) and the Fundamental Research Funds for the Central Universities (No.: 06500092). This study is also supported by State Key Lab of Advanced Metals and Materials, University of Science and Technology Beijing, P.R. China (No.: 2018-Z02). PC appreciates the financial support from Ministry of Business Innovation and Employment (MBIE), New Zealand. The authors also acknowledge the Australian Nuclear Science and Technology Organisation (ANSTO) for providing the neutron research facilities used in this study. The authors would like to thank the Australian Institute of Nuclear Science and Engineering (AINSE) Ltd. and ANSTO for providing funds (Nos.: P3430 and P4788) to enable us conduct the study on WOMBAT and DINGO.

References

  1. 1.
    Y.H. He, Y. Jiang, N.P. Xu, J. Zou, B.Y. Huang, C.T. Liu, P.K. Liaw: Advanced Materials, 2007, vol. 19, pp. 2102-06.CrossRefGoogle Scholar
  2. 2.
    Q. Peng, B. Yang, L. Liu, C. Song, B. Friedrich: Journal of Alloys and Compounds, 2016, vol. 656, pp. 530-8.CrossRefGoogle Scholar
  3. 3.
    Z. Trzaska, A. Couret, J.-P. Monchoux: Acta Materialia, 2016, vol. 118, pp. 100-8.CrossRefGoogle Scholar
  4. 4.
    S. Mayer, P. Erdely, F.D. Fischer, D. Holec, M. Kastenhuber, T. Klein, H. Clemens: Advanced Engineering Materials, 2017, vol. 19, pp. 1600735–61.CrossRefGoogle Scholar
  5. 5.
    A.P. Savitskii, N.N. Burtsev: Poroshkovaya Metallurgiya, 1983, vol. 3, pp. 24-9.Google Scholar
  6. 6.
    G.X. Wang, M. Dahms: Scripta Metallurgica et Materialia, 1992, vol. 26, pp. 1469-74.CrossRefGoogle Scholar
  7. 7.
    C.E. Wen, K. Yasue, Y. Yamada: Journal of Materials Science, 2001, vol. 36, pp. 1741-5.CrossRefGoogle Scholar
  8. 8.
    M. Schloffer, F. Iqbal, H. Gabrisch, E. Schwaighofer, F.-P. Schimansky, S. Mayer, A. Stark, T. Lippmann, M. Göken, F. Pyczak, H. Clemens: Intermetallics, 2012, vol. 22, pp. 231-40.CrossRefGoogle Scholar
  9. 9.
    Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, M. Free: International Materials Reviews, 2017, vol. pp. 1-53.Google Scholar
  10. 10.
    B. Liu, Y. Liu: 27—Powder metallurgy titanium aluminide alloys A2, in: Ma Qian, F.H.F. (Ed.) Titanium Powder Metallurgy. Butterworth-Heinemann, Boston, 2015, pp. 515-31.Google Scholar
  11. 11.
    K.-D. Liss, R.E. Whitfield, W. Xu, T. Buslaps, L.A. Yeoh, X. Wu, D. Zhang, K. Xia: Journal of Synchrotron Radiation, 2009, vol. 16, pp. 825-34.CrossRefGoogle Scholar
  12. 12.
    K.-D. Liss, A. Bartels, H. Clemens, S. Bystrzanowski, A. Stark, T. Buslaps, F.-P. Schimansky, R. Gerling, C. Scheu, A. Schreyer: Acta Materialia, 2006, vol. 54, pp. 3721-35.CrossRefGoogle Scholar
  13. 13.
    Y. Jiang, Y.H. He, N.P. Xu, J. Zou, B.Y. Huang, C.T. Liu: Intermetallics, 2008, vol. 16, pp. 327-32.CrossRefGoogle Scholar
  14. 14.
    G. Hao, H. Wang, X. Li: Materials Letters, 2015, vol. 142, pp. 11-4.CrossRefGoogle Scholar
  15. 15.
    Y. Jiang, C. Deng, Y. He, Y. Zhao, N. Xu, J. Zou, B. Huang, C.T. Liu: Materials Letters, 2009, vol. 63, pp. 22-4.CrossRefGoogle Scholar
  16. 16.
    A. Couret, G. Molénat, J. Galy, M. Thomas: Intermetallics, 2008, vol. 16, pp. 1134-41.CrossRefGoogle Scholar
  17. 17.
    Y.H. Wang, J.P. Lin, Y.H. He, X. Lu, Y.L. Wang, G.L. Chen: Journal of Alloys and Compounds, 2008, vol. 461, pp. 367-72.CrossRefGoogle Scholar
  18. 18.
    B. Liu, Y. Liu, W. Zhang, J.S. Huang: Intermetallics, 2011, vol. 19, pp. 154-159.CrossRefGoogle Scholar
  19. 19.
    Z.S. Rak, J. Walter: Journal of Materials Processing Technology, 2006, vol. 175, pp. 358-63.CrossRefGoogle Scholar
  20. 20.
    I.M. Robertson, G.B. Schaffer: Powder Metallurgy, 2010, vol. 53, pp. 12-9.CrossRefGoogle Scholar
  21. 21.
    H.T. Wang, M. Lefler, Z.Z. Fang, T. Lei, S.M. Fang, J.M. Zhang, Q. Zhao: Key Engineering Materials, 2010, vol. 436, pp. 157-63.CrossRefGoogle Scholar
  22. 22.
    X. Wu: Intermetallics, 2006, vol. 14, pp. 1114-22.CrossRefGoogle Scholar
  23. 23.
    I.A. Mwamba, L.H. Chown: Journal of the Southern African Institute of Mining and Metallurgy, 2011, vol. 111, pp. 159-65.Google Scholar
  24. 24.
    O.M. Ivasishin, A.N. Demidik, D.G. Savvakin: Powder Metallurgy and Metal Ceramics, 1999, vol. 38, pp. 482-7.CrossRefGoogle Scholar
  25. 25.
    G. Chen, K.-D. Liss, P. Cao: Acta Materialia, 2014, vol. 67, pp. 32-44.CrossRefGoogle Scholar
  26. 26.
    O. Ivasishin, V. Moxson: 8 - Low-cost titanium hydride powder metallurgy, in: Ma Qian, F.H. Froes (Ed.) Titanium Powder Metallurgy, Butterworth-Heinemann, Boston, 2015, pp. 117-48.CrossRefGoogle Scholar
  27. 27.
    B. Viswanathan, S.S. Murthy, M.V.C. Sastri: Metal hydrides: fundamentals and applications, 1 ed., Springer1999.Google Scholar
  28. 28.
    G. Chen, K.D. Liss, G. Auchterlonie, H. Tang, P. Cao: Metallurgical and Materials Transactions A, 2017, vol. 48, pp. 2949-59.CrossRefGoogle Scholar
  29. 29.
    G. Chen, P. Cao: Metallurgical and Materials Transactions A, 2013, vol. 44, pp. 5630-3.CrossRefGoogle Scholar
  30. 30.
    A.R. Kennedy: Powder Metallurgy, 2002, vol. 45, pp. 75-9.CrossRefGoogle Scholar
  31. 31.
    J. Banhart: Progress in Materials Science, 2001, vol. 46, pp. 559-632.CrossRefGoogle Scholar
  32. 32.
    A.R. Kennedy: Scripta Materialia, 2002, vol. 47, pp. 763-7.CrossRefGoogle Scholar
  33. 33.
    X. Li, Y. Liu, J. Ye, X. An, Z. Cao, X. Liu: Materials Letters, 2018, vol. 210, pp. 350-3.CrossRefGoogle Scholar
  34. 34.
    G. Chen, P. Cao, N. Edmonds: Materials Science and Engineering: A, 2013, vol. 582, pp. 117-25.CrossRefGoogle Scholar
  35. 35.
    G. Chen, N. Edmonds, P. Cao: International Journal of Powder Metallurgy, 2015, vol. 51, pp. 39-50.Google Scholar
  36. 36.
    G. Chen, K.-D. Liss, P. Cao: Metallurgical and Materials Transactions A, 2015, vol. 46, pp. 5887-99.CrossRefGoogle Scholar
  37. 37.
    I.M. Robertson, G.B. Schaffer: Powder Metallurgy, 2010, vol. 53, pp. 27-33.CrossRefGoogle Scholar
  38. 38.
    H. Liu, P. He, J.C. Feng, J. Cao: International Journal of Hydrogen Energy, 2009, vol. 34, pp. 3018-25.CrossRefGoogle Scholar
  39. 39.
    Y. Chang, A.J. Breen, Z. Tarzimoghadam, P. Kürnsteiner, H. Gardner, A. Ackerman, A. Radecka, P.A.J. Bagot, W. Lu, T. Li, E.A. Jägle, M. Herbig, L.T. Stephenson, M.P. Moody, D. Rugg, D. Dye, D. Ponge, D. Raabe, B. Gault: Acta Materialia, 2018, vol. 150, pp. 273-80.CrossRefGoogle Scholar
  40. 40.
    M. Janssen, G.D. Rieck: Transactions of the Metallurgical Society of AIME, 1967, vol. 239, pp. 1372-85.Google Scholar
  41. 41.
    F.J.J. Van Loo, G.D. Rieck: Acta Metallurgica, 1973, vol. 21, pp. 61-71.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingP.R. China
  2. 2.Department of Chemical and Materials EngineeringThe University of AucklandAucklandNew Zealand
  3. 3.Material Science and Engineering ProgramGuangdong Technion Israel Institute of TechnologyShantouP.R. China
  4. 4.State Key Laboratory of Porous Metal MaterialsNorthwest Institute for Non-ferrous Metal ResearchXi’anP.R. China
  5. 5.Technion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations