Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 491–501 | Cite as

A Kinetic Model for Dissolution of Zinc Oxide Powder Obtained from Waste Alkaline Batteries in Sodium Hydroxide Solutions

  • Nizamettin DemirkiranEmail author
  • Gülistan Deniz Turhan Özdemir


The determination of individual dissolution behaviors of zinc and manganese in waste alkaline battery powders is an important subject from the points of the leaching yield, design of leaching reactor, and separation and recovery steps of hydrometallurgical process. In the current study, we investigated the dissolution kinetics of zinc oxide powder. Zinc oxide was obtained from waste alkaline batteries, and sodium hydroxide solutions were used as solvent. In the experiments, the effects of solution concentration, reaction temperature, stirring speed, solid-to-liquid ratio, and particle size on the dissolution of zinc oxide were investigated. It was demonstrated that the dissolution increased with the increasing concentration, reaction temperature, and stirring speed, and with the decreasing solid-to-liquid ratio and particle size. In consequence of the kinetic analysis performed, it was found that the dissolution kinetics of zinc powder obeyed the Avrami model. Activation energy for the process was determined to be 19.42 kJ/mol. Zinc ions in the resulting solution after dissolution process was recovered in the form of hydroxy-carbonate product by precipitation method. Zinc oxide was produced by isothermal decomposition of hydroxy-carbonate product.



This study was supported by the Research Fund of the Inonu University (Project Number: FDK-2018-970).


  1. 1.
    1. C.C.B.M. De Souza, D.C. De Oliveria and J.A.S. Tenorio: J. Power. Sources, 2001, vol. 103, pp.120-126.CrossRefGoogle Scholar
  2. 2.
    2. E. Sayılgan, T. Kükrer, N.O. Yiğit, G. Civelekoglu and M. Kitis: J. Hazard. Mater., 2010, vol. 173, pp.137-143.CrossRefGoogle Scholar
  3. 3.
    3. G. Belardi, R. Lavecchia, F. Medici and L. Piga: Waste Manage., 2012, vol. 32, pp.1945-1951.CrossRefGoogle Scholar
  4. 4.
    4. S. Venkatachalam: Hydrometallurgy, Narosa Publishing House, London, 1998.Google Scholar
  5. 5.
    5. J. Cui and L. Zhang: J. Hazard. Mater., 2008, vol. 158, pp.228-256.CrossRefGoogle Scholar
  6. 6.
    6. V. Safari, G. Arzpeyma, F. Rashchi and N. Mostoufi: Int. J. Miner. Process., 2009, vol. 93, pp.79-83.CrossRefGoogle Scholar
  7. 7.
    7. G. Senanayake, S.M. Shin, A. Senaputra, A. Winn, D. Pugaev, J. Avraamides, J.S. Shon and D.J. Kim: Hydrometallurgy, 2010, vol. 105, pp.36-41.CrossRefGoogle Scholar
  8. 8.
    8. J. Gega and W. Walkowiak: Physicochem. Prob. Miner. Process., 2011, vol. 46, pp.155-162.Google Scholar
  9. 9.
    9. B. Zeytuncu: Pyhsicochem. Probl. Miner. Process., 2016, vol. 52, pp.437-450.Google Scholar
  10. 10.
    10. C.A. Nogueria and F. Margarido: Hydrometallurgy, 2015, vol. 157, pp. 13-21.CrossRefGoogle Scholar
  11. 11.
    11. A.A. Baba, A.F. Adekola and R.B. Bale: J. Hazard. Mater., 2009, vol. 171, pp.838-844.CrossRefGoogle Scholar
  12. 12.
    12. S.M. Shin, G. Senanayake, J. Sohn, J. Kang, D. Yang and T. Kim: Hydrometallurgy, 2009, vol. 96, pp.349-353.CrossRefGoogle Scholar
  13. 13.
    13. T. Buzatu, G. Popescu, I. Birloga and S. Saceanu: Waste Manage., 2013, vol. 33, pp.699-705.CrossRefGoogle Scholar
  14. 14.
    14. F. Ferella, I.D. Michelis, F. Pagnanelli, F. Beolchini, G. Furlani, M. Navarra, F. Veglio and L. Toro: Acta Metall. Slovaca, 2006, vol. 12, pp.95-104.Google Scholar
  15. 15.
    15. Y.A. El-Nadi, J.A. Daoud and H.F.Aly, J. Hazard. Mater., 2007, vol. 143, pp.328-334.CrossRefGoogle Scholar
  16. 16.
    16. M. Buzatu, S. Saceanu, M.I. Petrescu, G.V. Ghica and T. Buzatu: J. Power Sources, 2014, vol. 247, pp.612-617.CrossRefGoogle Scholar
  17. 17.
    17. N. Demirkıran: Sep. Sci. Technol., 2013, vol. 48, pp.827-832.CrossRefGoogle Scholar
  18. 18.
    18. O. Levenspiel: Chemical Reaction Engineering, 2nd ed., John Wiley and Sons Inc. New York, 1972.Google Scholar
  19. 19.
    19. C.Y. Wen: Ind. Eng. Chem., 1968, vol. 60, pp.34-54.CrossRefGoogle Scholar
  20. 20.
    20. H.Y. Sohn: Hwahak Konghak, 1976, vol. 14, pp.3-15.Google Scholar
  21. 21.
    21. Y.J. Zheng and K.K. Chen: Transac. Nonferrous Met. Soc. China, 2014, vol. 24, pp.536-543.CrossRefGoogle Scholar
  22. 22.
    22. F. Sevim, H. Saraç, M.M. Kocakerim and A. Yartaşı: Ind. Eng. Chem. Res., 2003, vol. 42, pp.2052-2057.CrossRefGoogle Scholar
  23. 23.
    23. N. Demirkıran and A. Künkül: Int. J. Miner. Process., 2007, vol. 83, pp.76-80.CrossRefGoogle Scholar
  24. 24.
    24. G. He, Z. Zhao, X. Wang, J. Li, X. Chen, L. He and X. Liu: Hydrometallurgy, 2014, vol. 144-145, pp.140-147.CrossRefGoogle Scholar
  25. 25.
    25. R.A. Reichle, K.G. McCurdy and L.G. Hepler: Can. J. Chem., 1975, vol. 53, pp.3841-3845.CrossRefGoogle Scholar
  26. 26.
    26. P. Li, Z.P. Xu, M.A Hampton, D.T. Vu, L. Huang, V. Rudolph and A.V. Nguyen: J. Phys. Chem. C, 2012, vol. 116, pp.10325-10332.CrossRefGoogle Scholar
  27. 27.
    27. S. Music, S. Popovic, M. Maljkovic and D. Dragçevic: J. Alloy Compd., 2002, vol. 347, pp.324-332.CrossRefGoogle Scholar
  28. 28.
    28. S. Zhang, H. Fortier and J.R. Dahn: Mater. Res. Bull., 2004, vol. 39, pp.1939-1948.CrossRefGoogle Scholar
  29. 29.
    29. N. Koga, Y. Matsuda and H. Tanaka: Chem. Educator., 2005, vol. 10, pp.440-443.Google Scholar
  30. 30.
    30. A.H. Nobari and M. Halali: Chem. Eng. J., 2006, vol. 121, pp.79-84.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of Engineeringİnönü UniversityMalatyaTurkey

Personalised recommendations