Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 16–21 | Cite as

Inclusion Capture Probability Prediction Model for Bubble Floatation in Turbulent Steel Flow

  • Haojian Duan
  • Ying RenEmail author
  • Lifeng ZhangEmail author
Communication
  • 117 Downloads

Abstract

The turbulent flow around bubbles is simulated for the fixed turbulent kinetic energy. Inclusion motion through the flow field is studied by considering the stochastic effect of turbulence to calculate the capture probability of inclusions with different sizes to a fixed-size individual bubble according to the redefinition. Using the cubic spline interpolation, the capture probability is predicted as functions of the bubble size, inclusion size and turbulent kinetic energy.

Notes

The authors are grateful for support from the National Key R&D Program of China (2017YFB0304000 & 2017YFB0304001), National Science Foundation China (Grant No. 51725402), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality Steel Consortium (HQSC) and Green Process Metallurgy and Modeling (GPM2) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

References

  1. 1.
    1. L. Zhang and B.G. Thomas: ISIJ International, 2003, vol. 43, pp. 271-91.CrossRefGoogle Scholar
  2. 2.
    2. L. Zhang, J. Aoki and B.G. Thomas: Metallurgical and Materials Transactions B, 2006, vol. 37, pp. 361-79.CrossRefGoogle Scholar
  3. 3.
    3. L. Zhang and S. Taniguchi: International Materials Reviews, 2000, vol. 45, pp. 59-82.CrossRefGoogle Scholar
  4. 4.
    4. H.J. Schulze: Mineral Processing and Extractive Metallurgy Review, 1989, vol. 5, pp. 43-76.CrossRefGoogle Scholar
  5. 5.
    5. A. Nguyen Van: International Journal of Mineral Processing, 1993, vol. 37, pp. 1-25.CrossRefGoogle Scholar
  6. 6.
    6. A.V. Nguyen, J. Ralston and H.J. Schulze: International Journal of Mineral Processing, 1998, vol. 53, pp. 225-49.CrossRefGoogle Scholar
  7. 7.
    7. T.Y. Liu and M.P. Schwarz: International Journal of Mineral Processing, 2009, vol. 90, pp. 45-55.CrossRefGoogle Scholar
  8. 8.
    8. T.Y. Liu and M.P. Schwarz: Chemical Engineering Science, 2009, vol. 64, pp. 5287-5301.CrossRefGoogle Scholar
  9. 9.
    9. J. Meng, E. Tabosa, W. Xie, K. Runge, D. Bradshaw and E. Manlapig: Minerals Engineering, 2016, vol. 95, pp. 79-95.CrossRefGoogle Scholar
  10. 10.
    10. A.V. Nguyen, D.-A. An-Vo, T. Tran-Cong and G.M. Evans: International Journal of Mineral Processing, 2016, vol. 156, pp. 75-86.CrossRefGoogle Scholar
  11. 11.
    11. H. Duan, L. Zhang, B.G. Thomas and A.N. Conejo: Metallurgical and Materials Transactions B, 2018, vol. 49, pp. 2722-43.CrossRefGoogle Scholar
  12. 12.
    12. H. Duan, Y. Ren and L. Zhang: JOM, 2018, vol. 70, pp. 2128-38.CrossRefGoogle Scholar
  13. 13.
    13. M. Soder, P. Jonsson and L. Jonsson: Steel Research International, 2004, vol. 75, pp. 128-38.CrossRefGoogle Scholar
  14. 14.
    14. V.D. Felice, I.L.A. Daoud, B. Dussoubs, A. Jardy and J.-P. Bellot: ISIJ International, 2012, vol. 52, pp. 1273-80.CrossRefGoogle Scholar
  15. 15.
    15. W. Lou and M. Zhu: Metallurgical and Materials Transactions B, 2013, vol. 44, pp. 762-82.CrossRefGoogle Scholar
  16. 16.
    16. W. Lou and M. Zhu: ISIJ International, 2014, vol. 54, pp. 9-18.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations