Advertisement

Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Electrical Conductivity

  • Zhengde Pang
  • Xuewei Lv
  • Zhiming Yan
  • Dong Liang
  • Jie Dang
Article
  • 19 Downloads

Abstract

The electrical conductivity of the CaO-SiO2-Al2O3-MgO-TiO2 slag was determined using the four-electrode method. The effect of the Al2O3 and Al2O3/SiO2 mass ratio on the electrical conductivity was studied. At a fixed CaO/SiO2 ratio of 1.20, the electrical conductivity decreases with increasing Al2O3 from 16 mass pct to 24 mass pct because of the increased polymerization of aluminosilicate structures and the reduced amount of conductive ions. However, it increases with Al2O3 of more than 24 mass pct because of the difference in the stable energy between [AlO4]5− and [SiO4]4−. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.79 causes the electrical conductivity to increase and has an opposite effect when the ratio is greater than 0.79. Furthermore, Raman spectroscopy of the quenched slags was analyzed to understand the structural role of Al2O3 and Al2O3/SiO2 mass ratio in the network. The Raman spectroscopy results indirectly supported the variations of electrical conductivity with the composition of the slags.

Notes

Acknowledgment

The authors wish to express their thanks to the Natural Science Fund Excellent Youth Project Funding of China (Grant No. 51522403) for the financial support of this research.

References

  1. 1.
    A. Mitchell, J. Cameron: Metall and Materi Trans B, 1971, vol. 2, pp. 3361-66.CrossRefGoogle Scholar
  2. 2.
    S. Hara: Transactions of the Iron & Steel Institute of Japan, 1983, vol. 23, pp. 1053-58.CrossRefGoogle Scholar
  3. 3.
    K. C. Mills: Transactions of the Iron & Steel Institute of Japan, 1993, vol. 33, pp. 148-55.CrossRefGoogle Scholar
  4. 4.
    JOM Bockris, JA Kitchener, S Ignatowicz, and JW Tomlinson: Trans. Faraday Soc., 1952, vol. 48, pp. 75-91.CrossRefGoogle Scholar
  5. 5.
    J. O. M. Bockris and A. K. N. Reddy: Modern Electrochemistry, Plenum Press, New York, 1970.Google Scholar
  6. 6.
    A. Shankar: Metallurgi Och Metalliska Material, 2007.Google Scholar
  7. 7.
    Z. Yan, X. Lv, D. Liang, and C. Bai: Metall. Materi. Trans. B, 2017, vol. 48, pp. 1092-99.CrossRefGoogle Scholar
  8. 8.
    Z. Yan, X. Lv, Z. Pang, W. He, D. Liang, C. Bai: Metall. Materi. Trans. B, 2017, vol. 48, pp. 2607-14.CrossRefGoogle Scholar
  9. 9.
    D. Liang, Z. Yan, X. Lv, J. Zhang and C. Bai: Metall. Materi. Trans. B, 2016, vol. 48, pp. 573-81Google Scholar
  10. 10.
    Z. Yan, X. Lv, Z. Pang, X. Lv and C. Bai: Metall. Materi. Trans. B, 2018, vol. 49, pp. 1322-30.CrossRefGoogle Scholar
  11. 11.
    S. Nesterenko, V. M. Khomenko: Russ. Metall., 1985, vol. 2, pp. 42-5.Google Scholar
  12. 12.
    H. Winterhager, H.L. Greiner, and R. Kammel: Westdeutscher Verlag, Cologne, 1966.Google Scholar
  13. 13.
    A. Adachi, K. Ogino: Yoguen, Fused Salts, 1964, vol.7, pp. 370.Google Scholar
  14. 14.
    L. Segers, A. Fontana, R. Winand: Can. Metall. Q, 1983, vol. 22, pp. 429-35.CrossRefGoogle Scholar
  15. 15.
    L. Segers, A. Fontana, and R. Winand: IMM Trans. C, 1979, vol. 88, pp. 53-6.Google Scholar
  16. 16.
    M. Kawahara, K. Morinaga, T. Yanagase: Can. Metall. Q, 1983, vol. 22, pp. 143-7.CrossRefGoogle Scholar
  17. 17.
    J. H. Park: Metall. Materi. Trans. B, 2013, vol. 44, pp. 938-47.CrossRefGoogle Scholar
  18. 18.
    B. O. Mysen, D. Virgo, and I. Kushiro: Am. Mineral., 1981, Vol. 66, pp. 678-701.Google Scholar
  19. 19.
    B. O. Mysen, D. Virgo, and F. A. Seifert: Am. Mineral., 1985, vol. 70, pp. 88-105.Google Scholar
  20. 20.
    S. B. Sarkar, ISIJ Int., 1989, vol. 29, pp. 348-51.CrossRefGoogle Scholar
  21. 21.
    J. Cameron, M. Etienne, and A. Mitchell (1989) Metall. Mater. Trans. B, vol. 1, pp. 1839-44.Google Scholar
  22. 22.
    P. P. Evseev: Avtomat. Svarka, 1967, vol. 11, pp. 42-5.Google Scholar
  23. 23.
    J. D. Mackenzie: Chem. Rev., 1956, vol. 56, pp. 455-70.CrossRefGoogle Scholar
  24. 24.
    Q. Jiao, N. J. Themelis: Metall. Materi. Trans. B, 1988, vol. 19, pp. 133-40.CrossRefGoogle Scholar
  25. 25.
    I. Henry, J.W. Tomlinson, and C. John: Trans. Farad. Soc., 1953, vol. 49, pp. 796-801.CrossRefGoogle Scholar
  26. 26.
    E. A. Dancy and G. J. Derge: Trans. AIME, 1966, vol. 236, pp. 1642-48.Google Scholar
  27. 27.
    RG Duan, KM Liang, GU Shouren: Mater. Trans. JIM, 1998, vol. 39, pp. 1162-63.CrossRefGoogle Scholar
  28. 28.
    T Hoster, J Pötschke: J. Iron. Steel Res. Int., 1983, vol. 54, pp. 87–98Google Scholar
  29. 29.
    B. O. Mysen, D. Virgo, C. M. Scarfe, and D. J. Cronin: Am. Miner., 1980, vol. 65, pp. 690–710.Google Scholar
  30. 30.
    B. O. Mysen, L.W. Finger, D. Virgo, and F.A. Seifert: Am. Miner., 1982, vol. 67, pp. 686–95.Google Scholar
  31. 31.
    B. O. Mysen, D. Virgo, and F. A. Seifert: Rev. Geophys., 1982, vol. 20, pp. 353–83.CrossRefGoogle Scholar
  32. 32.
    P. F. Mcmillan and B. Piriou: J. Non-cryst. Solids, 1983, vol. 55, pp. 221–42.CrossRefGoogle Scholar
  33. 33.
    P. F. Mcmillan, B. T. Poe, P. H. Gillet, and B. Reynard: Geochimica et Cosmochimica Acta, 1994, vol. 58, pp. 3653–64.CrossRefGoogle Scholar
  34. 34.
    P. F. Mcmillan, B. Piriou, and A. Navrotsky: Geochimica et Cosmochimica Acta, 1982, vol. 46, pp. 2021–37.CrossRefGoogle Scholar
  35. 35.
    A. Fernández, F. Puertas, I. Sobrados, and J. Sanz: J. Am. Ceram. Soc., 2003, vol. 86, pp. 1389–94.CrossRefGoogle Scholar
  36. 36.
    G. Zhang, Q. Xue and K. Chou: Metall. Materi. Trans. B, 2012, vol. 43, pp. 849-55.CrossRefGoogle Scholar
  37. 37.
    S. B. Sarkar and P. K. Sen: Trans. Indian Inst. Met., 1978, vol. 31, pp. 276–78.Google Scholar
  38. 38.
    P.V. Riboud, Y. Roux, L.D. Lucas, and H. Gaye: Fachber. Huttenpraxis Met., 1981, vol. 19, pp. 859–69.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Zhengde Pang
    • 1
    • 2
  • Xuewei Lv
    • 1
    • 2
    • 3
  • Zhiming Yan
    • 1
    • 2
  • Dong Liang
    • 4
  • Jie Dang
    • 1
    • 2
  1. 1.State Key Laboratory of Mechanical TransmissionsChongqing UniversityChongqingP.R. China
  2. 2.Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New MaterialsChongqing UniversityChongqingP.R. China
  3. 3.College of Materials Science and EngineeringChongqing UniversityChongqingP.R. China
  4. 4.Research Institute of Laiwu Iron & Steel Co. Ltd.LaiwuP.R. China

Personalised recommendations