Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 251–261 | Cite as

Viscosity of Iron Oxide Aluminosilicate Melts

  • Zhiming Yan
  • Ramana G. ReddyEmail author
  • Xuewei LvEmail author
  • Zhengde Pang
  • Chenguang Bai


A structure-based viscosity model has been developed for the CaO-MgO-FeO-SiO2-Al2O3 system and its subsystems. A critical analysis of the experimental data for iron oxide aluminosilicate systems has been conducted and used in the optimization of a model, which provides a link between the viscosity and the structures of the melts. The structural characteristics of aluminosilicate melt can be described by four types of oxygen: bridging oxygen \( {\text{O}}_{i}^{0} \), non-bridging oxygen \( {\text{O}}_{j}^{ - } \), free oxygen O2−, and excess bridging oxygen O*. The present model is capable of predicting the viscosities in the CaO-MgO-FeO-SiO2-Al2O3 system and its subsystems over wide ranges of composition and temperature above the liquidus within experimental uncertainties, and the average of relative errors for this model was found to be 19.94 pct. This model includes FeO-SiO2, CaO-SiO2-FeO, Al2O3-SiO2-FeO, MgO-SiO2-FeO, CaO-SiO2-MgO-FeO, CaO-SiO2-Al2O3-FeO, and CaO-MgO-SiO2-Al2O3-FeO. It was found that the effects of different metal cations on the viscosity can be determined, and the ability to reduce viscosity in the silicate melts follows the order: FeO > CaO > MgO. In the present model, the predicted viscosity decreased when CaO was initially initial added to the Al2O3-MgO-FeO-SiO2 system at a fixed SiO2 content because Ca2+ has the highest priority for charge compensation and FeO is the strongest modifier for this slag.



This study was supported by Program for the Youth Top-notch Talents of Chongqing (Grant No. 20151001) and the China Scholarship Council. Authors are pleased to acknowledge the financial support provided by ACIPCO for this research project. We also thank the Department of Metallurgical and Materials Engineering, The University of Alabama for providing the experimental and analytical facilities for this research work.


  1. 1.
    Mills K: Southern African Pyometallurgy., 2011, p. 52.Google Scholar
  2. 2.
    Wu G: Universitätsbibliothek der RWTH Aachen, Thesis, 2015.Google Scholar
  3. 3.
    Chen H, Chen M, Zhang W: Metall and Materi Trans B. 2016, vol.47, pp:2861-2874.CrossRefGoogle Scholar
  4. 4.
    Gan L, Xin J, Zhou Y: ISIJ Inter. 2017, vol 57:1303-1312.CrossRefGoogle Scholar
  5. 5.
    Khanna R, Sahajwalla V: Treatise on process metallurgy. Elsevier, Cambridge; 2013.Google Scholar
  6. 6.
    Z. Yan, R. Reddy, X. Lv, and Z. Pang: ISIJ Int. 2018. 25: 879-889. Google Scholar
  7. 7.
    M. Chen, S.Raghunath and B. Zhao: Metall. Mater. Trans. B 2013, vol. 44, pp. 506-515.CrossRefGoogle Scholar
  8. 8.
    Y. Shiraishi, K. Ikeda, A. Tamura, and T. Sait: Transactions of the Japan Institute of Metals 1978, vol. 19, pp. 264-274.CrossRefGoogle Scholar
  9. 9.
    G. H. Kaiura, J. M. Toguri and G. Marchant: Can. Metall. Q. 1977, vol. 16, pp. 156-160.CrossRefGoogle Scholar
  10. 10.
    M. Kucharski, N. M. Stubina and J. M. Toguri: Can. Metall. Q. 1989, vol. 28, pp. 7-11.CrossRefGoogle Scholar
  11. 11.
    G. Urbain, Y. Bottinga and P. Richet: Geochim. Cosmochim. Acta 1982, vol. 46, pp. 1061-1072.CrossRefGoogle Scholar
  12. 12.
    F. Ji, S. Du and S. Seetharaman: Metall. Mater. Trans. B 1997, vol. 28, pp. 827-834.CrossRefGoogle Scholar
  13. 13.
    M. Chen and B. Zhao: Metall. Mater. Trans. B 2015, vol. 46, pp. 577-584.CrossRefGoogle Scholar
  14. 14.
    P. Williams: Trans. Inst. Min. Metall. Sect. C, 1983, pp. 105–109.Google Scholar
  15. 15.
    F. Johannsen and W. Wiese: Z. Erzbergbau Metallhuttenwes. 1958, vol. S1, pp. 1-15.Google Scholar
  16. 16.
    M. Chen, S.Raghunath and B. Zhao: Metall and Materi Trans B 2013, vol. 44, pp. 820-827.CrossRefGoogle Scholar
  17. 17.
    P. Rontgen, H. Winterhager, and R. Kammel: Z. Erzbergbau Metallhuttenwes. 1956, vol. 2H, pp. 207-214.Google Scholar
  18. 18.
    A. F. Kurochkin, A. V. Pavlov and A. N. Kvyatkovskii: Kompleksnoe ispol’zovanie mineral’nogo syr’ya 1983, vol. 12, pp. 33-36.Google Scholar
  19. 19.
    L. Sheludyakov, E. Sarancha, and A. Vakhitov: Trudy Instituta Khimicheskikh Nauk 1967, vol. 15, pp. 158-164.Google Scholar
  20. 20.
    M. Chen, S.Raghunath and B. Zhao: Metall. Mater. Trans. B 2014, vol. 45, pp. 58-65.CrossRefGoogle Scholar
  21. 21.
    F. Ji, S. Du and S. Seetharaman: Ironmaking & Steelmaking 1998, vol. 25, pp. 309-316.Google Scholar
  22. 22.
    N.A. Toropov and B.A. Bryantsev: Strukt. Prevrashchen. v Steklakh pri Povyshennykh 1965, vol. 1, pp. 178-200.Google Scholar
  23. 23.
    K. Azuma, K. Okamura, N. Nakabayashi and S. Lee: J. Min., 1973, vol. 89, pp. 467-472.Google Scholar
  24. 24.
    H. J. Hurst, F. Novak and J. H. Patterson: Fuel 2000, vol. 79, pp. 1797-1799.CrossRefGoogle Scholar
  25. 25.
    H. J. Hurst, F. Novak and J. H. Patterson: Fuel 1999, vol. 78, pp. 1831-1840.CrossRefGoogle Scholar
  26. 26.
    A. A. Gimmelfarb: IZV AKAD NAUK SSSR METALLY, 1968, vol. 2, pp. 59-70.Google Scholar
  27. 27.
    R. Higgins, T. Jones: Bulletin of Institution of mining and metallurgy 1963, vol. 72, pp. 825-864.Google Scholar
  28. 28.
    R. J. Kim, S. Y. Lee, M. J. Dong, M. S. Jung and S. Hoyi: ISIJ Int. 2004, vol. 44, pp. 1291-1297.CrossRefGoogle Scholar
  29. 29.
    P.M. Bills: Journal of the Iron and Steel Institute 1963, vol. 201, pp. 133-140.Google Scholar
  30. 30.
    Y.S. Lee, J.H. Park, D.J. Min, S.H. Yi, and W.W. Huh: Proc. Ironmak. Conf. 2002, pp. 155–66.Google Scholar
  31. 31.
    J. Frenkel: Z. Phys., 1926, vol. 35, pp. 652–69.CrossRefGoogle Scholar
  32. 32.
    J. Frenkel: Trans. Faraday Soc., 1937, vol. 33, pp. 58–65.CrossRefGoogle Scholar
  33. 33.
    J. Frenkel: Kinetic Theory of Liquids. Oxford University Press, Oxford, 1946.Google Scholar
  34. 34.
    H. Eyring: J. Chem. Phys., 1936, vol. 4, pp. 283–91.CrossRefGoogle Scholar
  35. 35.
    R. Ewell and H. Eyring: J. Chem. Phys., 1937, vol. 5, pp. 726–36.CrossRefGoogle Scholar
  36. 36.
    J.O.M. Bockris and A. K. N. Reddy: Modern Electrochemistry, 6th Printing. (Plenum Press, New York, 1977), pp. 513-622.Google Scholar
  37. 37.
    T. Yokokawa and K. Niwa: Transactions of the Japan Institute of Metals, 1969, vol. 10, pp. 3-7.CrossRefGoogle Scholar
  38. 38.
    R. Fürth: Math Proc Cambridge 1941, vol. 37, pp. 252-275.CrossRefGoogle Scholar
  39. 39.
    C. J. B. Fincham and F. D. Richardson: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 1954, vol. 223, pp. 40-62.Google Scholar
  40. 40.
    G. Zhang, K. Chou and K. C. Mills: Metall. Mater. Trans. B 2014, vol. 45, pp. 698-706.CrossRefGoogle Scholar
  41. 41.“, 2011.
  42. 42.
    R. G. Reddy and K. Hebbar: Min. Metal. Proc. 2001, vol 18, pp. 195-199.Google Scholar
  43. 43.
    R.G. Reddy and K. Hebbar: TMS EPD Congress. 1991, pp. 523–540.Google Scholar
  44. 44.
    Y. Waseda and Y. Shiraishi: Transactions of the Japan Institute of Metals 1980, vol. 21, pp. 51-62.CrossRefGoogle Scholar
  45. 45.
    L. Zhang and S. Jahanshahi: Metall. Mater. Trans. B 1998, vol. 29, pp. 187-195.CrossRefGoogle Scholar
  46. 46.
    G. Urbain, F. Cambier, M. Deletter and M.R. Anseau: Transactions & Journal of the British Ceramic Society 1981, vol. 80, pp. 139-141.Google Scholar
  47. 47.
    M. Suzuki and E. Jak: Metall. Mater. Trans. B 2013, vol. 44, pp. 1435-1450.CrossRefGoogle Scholar
  48. 48.
    M. Suzuki and E. Jak: Metall. Mater. Trans. B 2013, vol. 44, pp. 1451-1465.CrossRefGoogle Scholar
  49. 49.
    P.V. Riboud, Y. Roux, L.D. Lucas and H. Gaye: Huttenpraxis Metallweiterverarbeitung 1981, vol. 19, pp. 859-869.Google Scholar
  50. 50.
    T. Iida, H. Sakai, Y. Kita and K. Shigeno: ISIJ Int. 2000, vol. 40, pp. S110-S114.CrossRefGoogle Scholar
  51. 51.
    A. Kondratiev and E. Jak: Metall. Mater. Trans. B 2005, vol. 36, pp. 623-638.CrossRefGoogle Scholar
  52. 52.
    G. Wu, E. Yazhenskikh, K. Hack and M. Müller: Fuel Process. Technol. 2015, vol. 137, pp. 93-103.CrossRefGoogle Scholar
  53. 53.
    G. Wu, E. Yazhenskikh, K. Hack and M. Müller: Fuel Process. Technol. 2015, vol. 138, pp. 520-533.CrossRefGoogle Scholar
  54. 54.
    A.N. Grundy, H. Liu, I.-H. Jung, S.A. Decterov and A.D. Pelton: Int. J. Mater. Res. 2008, vol. 99, pp. 1185-1194.CrossRefGoogle Scholar
  55. 55.
    A.N. Grundy, I.-H. Jung, A.D. Pelton and S.A. Decterov: Int. J. Mater. Res. 2008, vol. 99, pp. 1195-1209.CrossRefGoogle Scholar
  56. 56.
    K.C. Mills and S. Sridhar: Ironmaking & steelmaking 1999, vol. 26, pp. 262-268.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.Metallurgical and Materials EngineeringThe University of AlabamaTuscaloosaUSA
  3. 3.Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New MaterialsChongqing UniversityChongqingChina
  4. 4.State Key Laboratory of Mechanical TransmissionsChongqing UniversityChongqingChina

Personalised recommendations