Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 27–31 | Cite as

Formation Mechanism of Stray Grain of Nickel-Based Single-Crystal Superalloy Under a High Magnetic Field During Directional Solidification

  • Weidong XuanEmail author
  • Huaiwei Zhang
  • Wei Shao
  • Zhongming Ren


We investigate the formation mechanism of stray grain of nickel-based single-crystal superalloy under a high magnetic field. It was shown that the high magnetic field induced the formation of stray grains on the side that the dendrite diverges the wall. In addition, results showed a sloping solid/liquid interface and a further increased sloping magnitude under a high magnetic field. Further, the formation process of stray grain in the high magnetic field is analyzed in detail.


This research was supported by the National Natural Science Foundation of China (Nos. 51604172, 51690162, U1560202).


  1. 1.
    R.C. Reed: The Superalloys: Fundaments and Applications. Cambridge University Press, Cambridge, United Kingdom, 2006.CrossRefGoogle Scholar
  2. 2.
    C.L. Brundidge, D. Vandrasek, B. Wang, and T.M. Pollock: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 965–76.CrossRefGoogle Scholar
  3. 3.
    S. Tin, and T.M. Pollock: J. Mater. Sci., 2004, vol. 39, pp. 7199–205.CrossRefGoogle Scholar
  4. 4.
    J. Zhang, L. H. Lou: J. Mater. Sci. Tech., 2007, vol. 23, pp. 289–300.Google Scholar
  5. 5.
    M Konter, E Kats, N Hofmann (2000) In: TM Pollock, RD Kissinger, RR Bowman, KA Green, M McLean, SL Olson, JJ Schirra (eds) Superalloys. TMS, Warrendale, pp. 189–200.Google Scholar
  6. 6.
    L. Liu, T.W. Huang, J. Zhang, and H.Z. Fu: Mater. Lett., 2007, vol. 61, pp. 227–30.CrossRefGoogle Scholar
  7. 7.
    F. Wang, D.X. Ma, J. Zhang, L. Liu, J. Hong, S. Bogner, and A. Bührig-Polaczck: J. Cryst. Growth, 2014, vol. 389, pp. 47–54.CrossRefGoogle Scholar
  8. 8.
    W.D. Xuan, Z.M. Ren, and C.J. Li: J. Alloys Compd., 2015, vol. 621, pp. 10–17.CrossRefGoogle Scholar
  9. 9.
    X Li, Z.M. Ren, G.H Cao, A. Gagmoud, and Y. Fautrelle: Mater. Lett., 2011, vol. 65, pp. 3340–43.CrossRefGoogle Scholar
  10. 10.
    P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: J. Cryst. Growth, 1998, vol. 183, pp. 690–4.CrossRefGoogle Scholar
  11. 11.
    Y.D. Zhang, C. Esling, M.L.Gong, G. Vincent, X. Zhao, and L. Zuo: Scr. Mater., 2006, vol. 54, pp. 1897–900.CrossRefGoogle Scholar
  12. 12.
    X. Li, Y. Fautrelle, and Z. M. Ren: Acta Mater., 2008, vol. 56, pp. 3146–61.CrossRefGoogle Scholar
  13. 13.
    W.V.Youdelis and R. C. Dorward: Can. J. Phys., 1966, vol. 44, pp. 139–50.CrossRefGoogle Scholar
  14. 14.
    C. Vives and C. Perry: Int. J. Heat Mass Tran, 1986, vol. 29, pp. 21–33.CrossRefGoogle Scholar
  15. 15.
    T. Zhang, W.L. Ren, J.W. Dong, X. Li, Z.M. Ren, G.H. Cao, Y.B. Zhong, K. Deng, Z.S. Lei, and J.T. Guo: J. Alloys Compd., 2009, vol. 487, pp. 612–7.CrossRefGoogle Scholar
  16. 16.
    H.J. Dai, N. D’Souza, and H.B. Dong: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3430–38.CrossRefGoogle Scholar
  17. 17.
    Q.Y. Xu, H. Zhang, X. Qi, and B.C. Liu: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 555–61.CrossRefGoogle Scholar
  18. 18.
    D.X. Ma, Q. Wu, and Bührig-Polaczck: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 344–53.CrossRefGoogle Scholar
  19. 19.
    R.E. Napolitano and R.J. Schaefer: J. Mater. Sci., 2000, vol. 35, pp. 1641–59.CrossRefGoogle Scholar
  20. 20.
    A.D. Bussac and C.A. Gandin: Mater. Sci. Eng. A, 1997, vol. 237, pp. 35–42.CrossRefGoogle Scholar
  21. 21.
    N. D’Souza, P.A. Jennings, X.L. Yang, H.B. Dong, P.D. Lee, and M. McLean: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 657–66.CrossRefGoogle Scholar
  22. 22.
    W.D. Xuan, H. Liu, J. Lan, C.J. Li, Y.B. Zhong, X. Li, G.H. Cao, and Z.M. Ren: Metall. Mater. Trans. B, 2016, vol. 47B, pp.3231–36.CrossRefGoogle Scholar
  23. 23.
    C. Vives and C. Perry: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 479–96.CrossRefGoogle Scholar
  24. 24.
    W. E. Langlois and K.J. Lee: J. Cryst. Growth, 1983, vol. 62, pp. 481–86.CrossRefGoogle Scholar
  25. 25.
    W.J. Boettinger, F.S. Biancaniello, and S.R. Coriell: Metall. Mater. Trans. A, 1981, vol. 12A, pp. 321–27.CrossRefGoogle Scholar
  26. 26.
    P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: Acta Mater., 1998, vol. 46, pp. 4067–79.CrossRefGoogle Scholar
  27. 27.
    A. Kao : Metall. Mater. Trans. A, 2015, vol. 46, pp. 4215–4233.CrossRefGoogle Scholar
  28. 28.
    T.M. Pollock, and W.H. Murphy: Metall. Mater. Trans. A, 1996, vol. 27, pp. 1081–94.CrossRefGoogle Scholar
  29. 29.
    J.P. Gu, C. Beckermann, and A.F. Giamei: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1533–42.CrossRefGoogle Scholar
  30. 30.
    Y.Z. Zhou: Scr. Mater., 2011, vol. 65, pp. 281–84.CrossRefGoogle Scholar
  31. 31.
    J.D. Miller and T.M.Pollock: Acta Mater., 2014, vol. 78, pp. 23–36.CrossRefGoogle Scholar
  32. 32.
    W.D. Xuan, Z.M. Ren, and C.J. Li: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1461–66.CrossRefGoogle Scholar
  33. 33.
    X.B. Meng, J.G. Li, S.Z. Zhu, H.Q Du, Z.H. Yuan, J.W. Wang, T. Jin, X.F. Sun, and Z.Q. Hu: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1230–37.CrossRefGoogle Scholar
  34. 34.
    X. Li, Y. Fautrelle, and Z.M. Ren: Acta Mater., 2007, vol. 55, pp. 3803–13.CrossRefGoogle Scholar
  35. 35.
    W.D. Xuan, H. Liu, C.J. Li, Z.M. Ren, Y.B. Zhong, X. Li, and G.H. Cao: Metall. Mater. Trans. B, 2016, vol. 47B, pp.828–33.CrossRefGoogle Scholar
  36. 36.
    X. Li, Y. Fautrelle, K. Zaidat, A. Gagnoud, Z.M. Ren, R. Moreau, Y.D. Zhang, and C. Esling: J. Cryst. Growth, 2010, vol. 312, pp. 267–72.CrossRefGoogle Scholar
  37. 37.
    H. Yasuda, I. Ohnaka, K. Kawasaki, A. Sugiyama, T. Ohmichi, J. Iwane, and K. Umetani: J. Cryst. Growth, 2004, vol. 262, pp. 645–52.CrossRefGoogle Scholar
  38. 38.
    R.H. Mathiesen, and L. Arnberg: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 283–7.CrossRefGoogle Scholar
  39. 39.
    D.A. Porter, and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd Edition, Chapman & Hall, London, 1992, pp.193.CrossRefGoogle Scholar
  40. 40.
    J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.CrossRefGoogle Scholar
  41. 41.
    J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng.1984, vol. 65, pp. 57–63.CrossRefGoogle Scholar
  42. 42.
    R.B. Mahapatra, and E. Weinberg: Metall. Trans. B, 1987, vol.18, pp. 425–32.CrossRefGoogle Scholar
  43. 43.
    M. Gäumann, R. Trivedi, TV. Kurz: Mater. Sci. Eng. A, 1997, vol. 226–228, pp. 763–69.CrossRefGoogle Scholar
  44. 44.
    M. Rappaz and Ch.-A. Gandin: Acta. Metall. Mater., 1993, vol. 41, pp. 345–60.CrossRefGoogle Scholar
  45. 45.
    L.H. Ungar, and R.A. Brown: Phys. Rev. B, 1984, vol. 29, pp. 1367–80,CrossRefGoogle Scholar
  46. 46.
    X. Li, Y. Fautrelle, Z.M. Ren, A. Gagnoud, R. Moreau, Y.D. Zhang, and C. Esling: Acta Mater., 2009, vol. 57, pp. 1689–701.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Weidong Xuan
    • 1
    Email author
  • Huaiwei Zhang
    • 2
  • Wei Shao
    • 1
  • Zhongming Ren
    • 1
  1. 1.State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and EngineeringShanghai UniversityShanghaiChina
  2. 2.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations