Measurements and Model Estimations of Viscosities of the MnO-CaO-SiO2-MgO-Al2O3 Melts
- 130 Downloads
Abstract
The viscosities of the MnO (0 to 55 mass pct)-CaO-SiO2-MgO (5 mass pct)-Al2O3 (20 mass pct) melts were measured by rotating cylinder method in the temperature range from 1573 K to 1873 K (1300 °C to 1600 °C). The measurements were carried out in the atmosphere of flowing CO/CO2 gas mixture with a volume ratio of 99/1, and molybdenum crucible and spindle were adopted. The results reveal that MnO is a viscosity reducing component, and the effect of MnO is more notable in the melts with higher ratio of CaO to SiO2. For example, in the melts with the mass ratio of CaO to SiO2 equal to 0.6, the addition of 5 mass pct MnO only slightly reduced the viscosities. Comparatively, the addition of 5 mass pct MnO made the viscosities of the melts with the mass ratio of CaO to SiO2 equal to 1.0 and 1.5 decrease remarkably. Based on the measured data, the viscosities estimation model proposed in our previous study was extended to the system containing MnO, and the model parameters were determined. The model can estimate and predict the viscosities of the aluminosilicate melts containing MnO well, and then some iso-viscosity contours of this system were calculated. From the iso-viscosity contours, it can be seen that MnO is almost equivalent to CaO in reducing the viscosities in the melt with high SiO2 content, while with the decrease of the SiO2 content MnO becomes more effective than CaO.
Notes
Acknowledgments
The financial supports on the projects 51774025, 51534001, and 51502230 from the National Natural Science Foundation of China are gratefully acknowledged.
References
- 1.J.S. Machin and D.L. Hanna: J. Am. Ceram. Soc., 1952, vol. 28, pp. 310–16.CrossRefGoogle Scholar
- 2.R. Riedel, L.M. Ruswisch, L. An, and R. Raj: J. Am. Ceram. Soc., 1998, vol. 81, pp. 3341-44.CrossRefGoogle Scholar
- 3.A.L. Jennifer: J. Am. Ceram. Soc., 2000, vol. 83, pp. 2341-59.Google Scholar
- 4.F.Z. Ji, S. Du and S. Seetharaman: Ironmaking and Steelmaking, 1998, vol. 25, pp. 309-16.Google Scholar
- 5.F.Z. Ji: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 181-86.CrossRefGoogle Scholar
- 6.F.Z. Ji, S. Su and S. Seetharaman: International Journal of Thermophysics, 1999,, vol. 20, pp. 309-23.CrossRefGoogle Scholar
- 7.S. Sridhar, S.Du, S. Seetharaman et al: Steel Res. Int., 2001, vol. 72, pp. 3-10.CrossRefGoogle Scholar
- 8.L. Zhang and S. Jahanshahi: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 187-95.CrossRefGoogle Scholar
- 9.Q.F. Shu, X.J. Hu, B.J. Yan et al: Ironmaking and Steelmaking, 2010, vol. 37, pp. 387-91.CrossRefGoogle Scholar
- 10.G.H. Zhang, K.C. Chou, Q.G. Xue et al: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 64-72.CrossRefGoogle Scholar
- 11.L.N. Josue, R.S. Antonio, H.R. Aurelio: ISIJ Int., 2018, vol. 58, pp. 220-26.CrossRefGoogle Scholar
- 12.W.L. Wang, J. Yu, L.J. Zhou et al.: Metall. Mater. Trans. B, 2019, vol. 49B, pp. 1580-87.Google Scholar
- 13.R.Z. Xu, J.L. Zhang, X.Y. Fan et al.: ISIJ Int., 2017, vol. 57, pp. 1887-94.CrossRefGoogle Scholar
- 14.H.B. Zuo, C. Wang, C.F. Xu et al.: Ironmaking Steelmaking, 2015, vol. 43, pp. 56-63.CrossRefGoogle Scholar
- 15.L. Zhang and S. Jahanshahi: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 177-86.CrossRefGoogle Scholar
- 16.J.O. Bockris and D.C. Lowe: P. Roy. Soc. Lond. A Mat., 1954, vol. 233, pp. 423-35.Google Scholar
- 17.J. Muller, J.H. Zietsman and P.C. Pistorius: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2639-51.CrossRefGoogle Scholar
- 18.Verlag Stahleisen GmbH: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Dusseldorf, 1995.Google Scholar
- 19.Q.F. Shu, Z. Wang, and K.C. Chou: Steel Res. Int., 2011, vol. 82, pp. 779-85.CrossRefGoogle Scholar
- 20.G. Urbain, Y. Bottinga, and P. Richet: Geochim. Cosmochim. Ac., 1982, vol. 46, pp. 1061-72.CrossRefGoogle Scholar
- 21.M.J. Toplis and D.B. Dingwell: Geochim. Cosmochim. Ac., 2004, vol. 68, pp. 5169-88.CrossRefGoogle Scholar
- 22.S. Seetharaman, D Sichen, and F.Z. Ji: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 827-34.Google Scholar
- 23.J.S. Machin, T.B. Yee, and D.L. Hanna: J. Am. Ceram. Soc., 1952, vol.35, pp. 322-25.CrossRefGoogle Scholar
- 24.H.D. Weymann: J. Am. Ceram. Soc., 1962, vol. 45, pp. 517-22.CrossRefGoogle Scholar
- 25.D Sichen, J. Bygden, and S. Seetharaman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 1-7.Google Scholar
- 26.P.V. Riboud, Y. Roux, L.D. Lucas, and H. Gaye: Fachber. Huttenprax. Metallweiterverarb., 1981, vol.19, pp. 859-69.Google Scholar
- 27.T. Iida, H. Sakai, Y. Kita, and K. Murakami: ISIJ Int., 2000, vol. 40, pp. 110-14.CrossRefGoogle Scholar
- 28.K.C. Mills and S. Sridhar: Ironmaking Steelmaking, 1999, vol. 26, pp. 262-68.CrossRefGoogle Scholar
- 29.K.C. Mills, L. Chapman, A.B. Fox, and S. Sridhar: Scand. J. Metall., 2010, vol. 30, pp. 396-403.CrossRefGoogle Scholar
- 30.Q.F. Shu and J.Y. Zhang: ISIJ Int., 2006, vol. 46, pp. 1548-53.CrossRefGoogle Scholar
- 31.Z. Wang, Q.F. Shu, and K.C. Chou: ISIJ Int., 2011, vol. 51, pp. 1021-27.CrossRefGoogle Scholar
- 32.M.H. Song, Q.F. Shu, and D. Sichen: Steel Res. Int., 2011, vol. 82, pp. 260-67.CrossRefGoogle Scholar
- 33.C.J.B. Fincham and F.D. Richardson: P. Roy. Soc. Lond. A Mat., 1954, vol. 223, pp. 29-40.CrossRefGoogle Scholar
- 34.Q.F. Shu: Steel Res. Int., 2009, vol. 80, pp. 107-12.Google Scholar