Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 376–384 | Cite as

Measurements and Model Estimations of Viscosities of the MnO-CaO-SiO2-MgO-Al2O3 Melts

  • Baijun YanEmail author
  • Yixiang Liu
  • Qifeng ShuEmail author
  • Tengfei Deng
  • Björn Glaser
Article
  • 130 Downloads

Abstract

The viscosities of the MnO (0 to 55 mass pct)-CaO-SiO2-MgO (5 mass pct)-Al2O3 (20 mass pct) melts were measured by rotating cylinder method in the temperature range from 1573 K to 1873 K (1300 °C to 1600 °C). The measurements were carried out in the atmosphere of flowing CO/CO2 gas mixture with a volume ratio of 99/1, and molybdenum crucible and spindle were adopted. The results reveal that MnO is a viscosity reducing component, and the effect of MnO is more notable in the melts with higher ratio of CaO to SiO2. For example, in the melts with the mass ratio of CaO to SiO2 equal to 0.6, the addition of 5 mass pct MnO only slightly reduced the viscosities. Comparatively, the addition of 5 mass pct MnO made the viscosities of the melts with the mass ratio of CaO to SiO2 equal to 1.0 and 1.5 decrease remarkably. Based on the measured data, the viscosities estimation model proposed in our previous study was extended to the system containing MnO, and the model parameters were determined. The model can estimate and predict the viscosities of the aluminosilicate melts containing MnO well, and then some iso-viscosity contours of this system were calculated. From the iso-viscosity contours, it can be seen that MnO is almost equivalent to CaO in reducing the viscosities in the melt with high SiO2 content, while with the decrease of the SiO2 content MnO becomes more effective than CaO.

Notes

Acknowledgments

The financial supports on the projects 51774025, 51534001, and 51502230 from the National Natural Science Foundation of China are gratefully acknowledged.

References

  1. 1.
    J.S. Machin and D.L. Hanna: J. Am. Ceram. Soc., 1952, vol. 28, pp. 310–16.CrossRefGoogle Scholar
  2. 2.
    R. Riedel, L.M. Ruswisch, L. An, and R. Raj: J. Am. Ceram. Soc., 1998, vol. 81, pp. 3341-44.CrossRefGoogle Scholar
  3. 3.
    A.L. Jennifer: J. Am. Ceram. Soc., 2000, vol. 83, pp. 2341-59.Google Scholar
  4. 4.
    F.Z. Ji, S. Du and S. Seetharaman: Ironmaking and Steelmaking, 1998, vol. 25, pp. 309-16.Google Scholar
  5. 5.
    F.Z. Ji: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 181-86.CrossRefGoogle Scholar
  6. 6.
    F.Z. Ji, S. Su and S. Seetharaman: International Journal of Thermophysics, 1999,, vol. 20, pp. 309-23.CrossRefGoogle Scholar
  7. 7.
    S. Sridhar, S.Du, S. Seetharaman et al: Steel Res. Int., 2001, vol. 72, pp. 3-10.CrossRefGoogle Scholar
  8. 8.
    L. Zhang and S. Jahanshahi: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 187-95.CrossRefGoogle Scholar
  9. 9.
    Q.F. Shu, X.J. Hu, B.J. Yan et al: Ironmaking and Steelmaking, 2010, vol. 37, pp. 387-91.CrossRefGoogle Scholar
  10. 10.
    G.H. Zhang, K.C. Chou, Q.G. Xue et al: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 64-72.CrossRefGoogle Scholar
  11. 11.
    L.N. Josue, R.S. Antonio, H.R. Aurelio: ISIJ Int., 2018, vol. 58, pp. 220-26.CrossRefGoogle Scholar
  12. 12.
    W.L. Wang, J. Yu, L.J. Zhou et al.: Metall. Mater. Trans. B, 2019, vol. 49B, pp. 1580-87.Google Scholar
  13. 13.
    R.Z. Xu, J.L. Zhang, X.Y. Fan et al.: ISIJ Int., 2017, vol. 57, pp. 1887-94.CrossRefGoogle Scholar
  14. 14.
    H.B. Zuo, C. Wang, C.F. Xu et al.: Ironmaking Steelmaking, 2015, vol. 43, pp. 56-63.CrossRefGoogle Scholar
  15. 15.
    L. Zhang and S. Jahanshahi: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 177-86.CrossRefGoogle Scholar
  16. 16.
    J.O. Bockris and D.C. Lowe: P. Roy. Soc. Lond. A Mat., 1954, vol. 233, pp. 423-35.Google Scholar
  17. 17.
    J. Muller, J.H. Zietsman and P.C. Pistorius: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2639-51.CrossRefGoogle Scholar
  18. 18.
    Verlag Stahleisen GmbH: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Dusseldorf, 1995.Google Scholar
  19. 19.
    Q.F. Shu, Z. Wang, and K.C. Chou: Steel Res. Int., 2011, vol. 82, pp. 779-85.CrossRefGoogle Scholar
  20. 20.
    G. Urbain, Y. Bottinga, and P. Richet: Geochim. Cosmochim. Ac., 1982, vol. 46, pp. 1061-72.CrossRefGoogle Scholar
  21. 21.
    M.J. Toplis and D.B. Dingwell: Geochim. Cosmochim. Ac., 2004, vol. 68, pp. 5169-88.CrossRefGoogle Scholar
  22. 22.
    S. Seetharaman, D Sichen, and F.Z. Ji: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 827-34.Google Scholar
  23. 23.
    J.S. Machin, T.B. Yee, and D.L. Hanna: J. Am. Ceram. Soc., 1952, vol.35, pp. 322-25.CrossRefGoogle Scholar
  24. 24.
    H.D. Weymann: J. Am. Ceram. Soc., 1962, vol. 45, pp. 517-22.CrossRefGoogle Scholar
  25. 25.
    D Sichen, J. Bygden, and S. Seetharaman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 1-7.Google Scholar
  26. 26.
    P.V. Riboud, Y. Roux, L.D. Lucas, and H. Gaye: Fachber. Huttenprax. Metallweiterverarb., 1981, vol.19, pp. 859-69.Google Scholar
  27. 27.
    T. Iida, H. Sakai, Y. Kita, and K. Murakami: ISIJ Int., 2000, vol. 40, pp. 110-14.CrossRefGoogle Scholar
  28. 28.
    K.C. Mills and S. Sridhar: Ironmaking Steelmaking, 1999, vol. 26, pp. 262-68.CrossRefGoogle Scholar
  29. 29.
    K.C. Mills, L. Chapman, A.B. Fox, and S. Sridhar: Scand. J. Metall., 2010, vol. 30, pp. 396-403.CrossRefGoogle Scholar
  30. 30.
    Q.F. Shu and J.Y. Zhang: ISIJ Int., 2006, vol. 46, pp. 1548-53.CrossRefGoogle Scholar
  31. 31.
    Z. Wang, Q.F. Shu, and K.C. Chou: ISIJ Int., 2011, vol. 51, pp. 1021-27.CrossRefGoogle Scholar
  32. 32.
    M.H. Song, Q.F. Shu, and D. Sichen: Steel Res. Int., 2011, vol. 82, pp. 260-67.CrossRefGoogle Scholar
  33. 33.
    C.J.B. Fincham and F.D. Richardson: P. Roy. Soc. Lond. A Mat., 1954, vol. 223, pp. 29-40.CrossRefGoogle Scholar
  34. 34.
    Q.F. Shu: Steel Res. Int., 2009, vol. 80, pp. 107-12.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Physical Chemistry of Metallurgy, School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingP.R. China
  2. 2.State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhanP.R. China
  3. 3.Department of Materials Science and EngineeringRoyal Institute of TechnologyStockholmSweden

Personalised recommendations