Advertisement

Study of the Influence of Xanthate Derivative Structures on Copper Sulfide Mineral Adsorption Under Acidic Conditions

  • D. M. Ávila-Márquez
  • I. A. Reyes-Domínguez
  • A. Blanco-Flores
  • H. P. Toledo-Jaldin
  • G. López-Téllez
  • J. Aguilar-Carrillo
  • E. J. Gutiérrez-Castañeda
Article
  • 50 Downloads

Abstract

Adsorption of commercial xanthate derivatives on copper sulfide mineral (covellite, CuS) was studied by kinetics and isotherm adsorption experiments. The adsorption of xanthate derivatives was confirmed by FTIR (Fourier transform infrared spectroscopy) and XPS (X-ray photoelectron spectroscopy) results. Experiments were performed with two different xanthate derivatives, C-4410 (O-pentyl S-2-propenyl ester) and C-4940 (isobutyl xanthogen ethyl formate), on individual doses of 0.05 g of powdered covellite. It was found that the equilibrium times at pH 2, 4, and 6 were different for both xanthate derivatives. The shortest times were achieved at pH 2 and 4. The results suggest that C-4110 can be used as collector in a wide range of pH, while C-4940 is limited to lower pH values. Pseudo first- and pseudo second-order kinetics models were thus applied to the experimental data for pH 2. The information obtained from the kinetics models combined with XPS allowed proposing the adsorption mechanism for the covellite-xanthate derivative pair. The adsorption takes place through a non-covalent interaction for C-4410 and chemisorption process for C-4940. The best-fitting isotherm models for C-4410 and C-4940 adsorption were Redlich–Peterson and Freundlich, respectively, which yield a maximum adsorption capacity of 57.07 mg g−1 for C-4410 and 44.62 mg g−1 for C-4940.

Notes

Acknowledgments

The authors would like to thank The National Council of Science and Technology (CONACYT by its Spanish acronym) of Mexico for the financial support granted through the project CB-254952-2016 and The Institute of Metallurgy of the Autonomous University of San Luis Potosi (IM-UASLP by its Spanish acronym) for the facilities to development the experimental work. Delia Ávila thanks the CONACYT for the postgraduate studies scholarship granted. The technical assistance of Francisco Galindo and Rosa Lina Tovar, from the IM-UASLP, and Nicolas Miranda from the Engineering Faculty of the UASLP is also recognized.

References

  1. 1.
    J. E. Dutrizac: Proceedings of a World Symposium on Metallurgy and Environmental Control, Sponsored by the TMS Lead, Zinc, and Tin Committee, 1990, vol. 11, pp. 161–91.Google Scholar
  2. 2.
    J.D. Scott and U. Dienstbach: in IMM Conf. on Extractive Metallurgy, 1990, pp. 121–34.Google Scholar
  3. 3.
    T. T. Chen, and J. E. Dutrizac: Metall. Trans. B, 1988; vol. 19, pp. 803-817.CrossRefGoogle Scholar
  4. 4.
    P. K. Ackerman, G. H. Harris, R. R. Klimpel and F. F. Aplan: Int. J. Miner. Process., 2000, vol. 58, 1-13.CrossRefGoogle Scholar
  5. 5.
    P. Somasundaran and M. B. Moudgil: Reagents in Mineral Technology, 21st ed., New York, N. Y., Marcel Dekker Inc., 1998, pp. 79–104.Google Scholar
  6. 6.
    J. Xiao, G. Liu, H. Zhong, Y. Huang and Z. Cao: J. Taiwan Inst. Chem. E., 2017, vol. 71, pp. 38-46.CrossRefGoogle Scholar
  7. 7.
    L. C. Juncal, M. V. Cozzarín and R. M. Romano: Spectro. Acta A, 2015; vol. 139 pp. 346-355.CrossRefGoogle Scholar
  8. 8.
    8.F. Yang, W. Sun and Y. Hu. Miner. Eng., 2012, vol. 39, pp. 140–148.CrossRefGoogle Scholar
  9. 9.
    P. Somasundaran and L. Zhang: J. Petrol. Sci. Eng., 2006, vol. 52, pp. 198-212.CrossRefGoogle Scholar
  10. 10.
    J. Xiao, N. Di, G. Liu and H. Zhong: Colloid. Surface. A, 2014, vol. 456, pp. 203-210.CrossRefGoogle Scholar
  11. 11.
    A. Blanco-Flores, A. Colín-Cruz, E. Gutiérrez-Segura, V. Sánchez-Mendieta, D. A. Solís-Casados, M. A. Garrudo-Guirado and R. Batista-González: Environmental Technology, 2014, vol. 35, pp.1508-1519.CrossRefGoogle Scholar
  12. 12.
    G. Fairthorne, D. Fornasiero, and J. Ralston: Int. J. Miner. Process., 1996; vol. 46, 137-153.CrossRefGoogle Scholar
  13. 13.
    G. Socrates: Infrared and Raman Characteristics Group Frequencies-Tables and Charts. 3rd ed., Chichester, England John Wiley and Sons, 2001 pp. 222-223.Google Scholar
  14. 14.
    R.O. Kagel and R.A. Nyguist: Infrared Spectra of Inorganic Compounds-(3800-45cm 1). Academic Press, Inc, New York, N.Y., 1971, pp. 249–50.Google Scholar
  15. 15.
    G. Busca: J. Mol. Catal. 1987; vol. 43, 225-236.CrossRefGoogle Scholar
  16. 16.
    N. Karikalan, R. Karthik, S. M. Chen, C. Karuppiah and A. Elangovan: Sci. Rep., 2017, vol. 7, 2494.CrossRefGoogle Scholar
  17. 17.
    H. Tillborg, A. Nilsson, B. Hernnäs, N. Mårtensson and R. E .Palmer: Surf. Sci., 1993, vol. 295, pp.1-12.CrossRefGoogle Scholar
  18. 18.
    U. Gelius, P. F. Heden, J. Hedman, B. J. Lindberg, R. Manne, R. Nordberg, C. Nordling and K. Siegbahn: Phys. Scripta, 1970, vol. 2, pp. 70-80.CrossRefGoogle Scholar
  19. 19.
    M. El-Desawy: Characterization and application of aromatic self-assembled monolayers (Doctoral dissertation, University of Bielefeld), 2007.Google Scholar
  20. 20.
    J. O. Babalola, B. A. Koiki, Y. Eniayewu, A. Salimonu, J. O. Olowoyo, V. O. Oninla, V. O. Oninlac, H. A. Alabic, E. A. Ofomaja and M. O. Omorogie: J. Environ. Chem. Eng., 2016, vol. 4, pp. 3527-3536.CrossRefGoogle Scholar
  21. 21.
    S.M. Bulatovic: Handbook of Flotation Reagents: Chemistry, Theory and Practice Flotation of Sulfide Ores, vol. 1, 1st ed., Nueva York, NY, Elsevier Science; 2007, pp. 235–40.Google Scholar
  22. 22.
    L.C. Juncal: Preparación, caracterización y estudio de las propiedades de compuestos xantatos y xantógenos con potenciales aplicaciones farmacológicas (Doctoral dissertation, Facultad de Ciencias Exactas, Universidad de la Plata), 2014.Google Scholar
  23. 23.
    T. M. Berhane, J. Levy, M. P. Krekeler and N. D. Danielson: Chemosphere 2017; 176:231-242.CrossRefGoogle Scholar
  24. 24.
    B.M. Moudgil, H. Soto and P. Somasundaran: Reagents in Mineral Technology, New York, N. Y., Marcel Dekker Inc., 1988, pp. 79–104.Google Scholar
  25. 25.
    A. Verma, S. Kumar and S. Kumar: J. Environ. Chem. Eng., 2017, vol. 5, pp. 2290-2304.CrossRefGoogle Scholar
  26. 26.
    H. N. Tran, S. J. You, A. Hosseini-Bandegharaei and H. P. Chao: Water Res., 2017, vol. 120, pp. 88-116.CrossRefGoogle Scholar
  27. 27.
    M. L. Soto, A. Moure, H. Domínguez and J. C. Parajó: J Food Eng., 2011, vol. 105, pp. 1-27.CrossRefGoogle Scholar
  28. 28.
    K. C. Nebaghe, Y. El Boundati, K. Ziat, A. Naji, L. Rghioui and M.Saidi: Fluid Phase Equilib., 2016, vol. 430, pp. 188-194.CrossRefGoogle Scholar
  29. 29.
    N. Ayawei, A.N. Ebelegi and D. Wankasi: J. Chem. 2017.  https://doi.org/10.1155/2017/3039817 CrossRefGoogle Scholar
  30. 30.
    L. Bartoňová, L. Ruppenthalová and M. Ritz: Chin. J. Chem. Eng., 2017, vol. 25 pp. 37-44.CrossRefGoogle Scholar
  31. 31.
    R. Saadi, Z. Saadi, R. Fazaeli and N. E. Fard: Korean J. Chem. Eng., 2015, vol. 32, pp. 787-799.CrossRefGoogle Scholar
  32. 32.
    P. K. Ackerman, G. H. Harris, R. R. Klimpel and F. F. Aplan: Int. J. Miner. Process., 1987, vol. 21, 105-127.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • D. M. Ávila-Márquez
    • 1
  • I. A. Reyes-Domínguez
    • 1
    • 2
  • A. Blanco-Flores
    • 3
  • H. P. Toledo-Jaldin
    • 4
  • G. López-Téllez
    • 5
  • J. Aguilar-Carrillo
    • 1
    • 2
  • E. J. Gutiérrez-Castañeda
    • 1
    • 2
  1. 1.Instituto de Metalurgia-Facultad de IngenieríaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Catedrático CONACyT - Consejo Nacional de Ciencia y TecnologíaCiudad de MéxicoMexico
  3. 3.División de MecánicaTecnológico de Estudios Superiores de TianguistencoSantiago TianguistencoMexico
  4. 4.Facultad de QuímicaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  5. 5.Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, (CCIQS)TolucaMexico

Personalised recommendations