Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 367–375 | Cite as

Molecular Dynamics Simulation on the Effect of MgO/Al2O3 Ratio on Structure and Properties of Blast Furnace Slag Under Different Basicity Conditions

  • Chunhe Jiang
  • Kejiang LiEmail author
  • Jianliang Zhang
  • Qinghua Qin
  • Zhengjian Liu
  • Wang Liang
  • Minmin Sun
  • Ziming Wang


The SiO2-Al2O3-CaO-MgO is the basic structural system of blast furnace slag and the composition directly affects the performance of the slag. Molecular dynamics simulations were carried out to analyze the local structure, structural unit, bond angle, transport properties, and enthalpy of the slag with the increase of MgO/Al2O3 mass ratio under different basicity conditions. It was found that the change of MgO/Al2O3 ratio does not affect the short-range order structure, but it will reduce the overall stability of the network structure. Through the analysis of the structural unit of the slag, it was found that the polymerization degree of the system decreases with the increase of MgO/Al2O3 ratio, indicating that the complex network structure of the system is partially depolymerized. Besides, the self-diffusion coefficients of each ion were concluded and the magnitudes were observed to be in the following order: Mg2+>Ca2+>Al3+>O2->Si4+. The diffusivity of the slag increases with the increase of MgO/Al2O3 ratio and the corresponding viscosity decreases. And the enthalpy of the slag is increased with the increase of MgO/Al2O3 ratio or basicity, therefore the fuel consumption should also be properly adjusted during the operation of blast furnace to ensure the target temperature.



Computations were performed on the Niagara supercomputer at the SciNet HPC Consortium in the Compute/Calcul Canada national computing platform. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund - Research Excellence, and the University of Toronto. The authors acknowledge the support of the National Science Foundation of China (51774032), the National Key Research and Development Program of China (2017YFB0304300 & 2017YFB0304303), and the Chinese Fundamental Research Funds for the Central Universities (FRF-TP-17-086A1).

Supplementary material

11663_2018_1450_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2580 kb)


  1. 1.
    1. A. Allu, A. Gaddam, S. Ganisett, S. Balaji, R. Siegel, G. Mather, M. Fabian, M. Pascual, N. Ditaranto, W. Milius, J. Senker, D. Agarkov, V. Kharton and J. Ferreira, Journal of Physical Chemistry B, 2018, vol. 122, pp. 4737-4747.CrossRefGoogle Scholar
  2. 2.
    2. H. Jabraoui, E. M. Achhal, A. Hasnaoui, J. Garden, Y. Vaills and S. Ouaskit, J Non-Cryst Solids, 2016, vol. 448, pp. 16-26.CrossRefGoogle Scholar
  3. 3.
    3. K. Li, M. Bouhadja, R. Khanna, J. Zhang, Z. Liu, Y. Zhang, T. Yang, V. Sahajwalla, Y. Yang and M. Barati, Fuel, 2016, vol. 186, pp. 561-570.;CrossRefGoogle Scholar
  4. 4.
    4. K. Li, R. Khanna, M. Bouhadja, J. Zhang, Z. Liu, B. Su, T. Yang, V. Sahajwall, C. Singh and M. Barati, Chemical Engineering Journal, 2017, vol. 313, pp. 1184-1193.CrossRefGoogle Scholar
  5. 5.
    5. M. Sadat, K. Muralidharan and L. Zhang, Comp Mater Sci, 2018, vol. 150, pp. 500-509.CrossRefGoogle Scholar
  6. 6.
    6. S. Ren, S. Li, Z. Su, J. Yang, H. Long, M. Kong, J. Yang and Z. Cai, Chemical Engineering Journal, 2018, vol. 351, pp. 540-547.;CrossRefGoogle Scholar
  7. 7.
    S. Ren, J. Yang, T. Zhang, L. Jiang, H. L. F. Guo and M. Kong: Chem. Eng. Res. Des., 2018, vol. 133, pp. 1-10.CrossRefGoogle Scholar
  8. 8.
    8. T. Wu, Q. Wang, T. Yao and S. He, J Non-Cryst Solids, 2016, vol. 435, pp. 17-26.CrossRefGoogle Scholar
  9. 9.
    9. D. Papanastassiou, P. Nicolaou and A. Send, Stahl Eisen, 2000, vol. 120, pp. 59-64.Google Scholar
  10. 10.
    10. P. Li, Q. Yu, Q. Qin and W. Du, Energ Source Part A, 2014, vol. 36, pp. 73-79.;CrossRefGoogle Scholar
  11. 11.
    11. H. Wang, S. Cui and X. Shan, Energy and Environment Materials, 2013, vol. 743-744, pp. 210-215.Google Scholar
  12. 12.
    12. A. Mehta and V. Sahajwalla, Scand J Metall, 2000, vol. 29, pp. 17-29.CrossRefGoogle Scholar
  13. 13.
    13. K. Li, J. Zhang, Z. Liu, and X. Jiang: Chin. J. Proc. Eng., 2014, vol. 14, pp. 162-72.CrossRefGoogle Scholar
  14. 14.
    14. S. Ren, F. Guo, J. Yang, L. Yao, Q. Zhao and M. Kong, Chemical Engineering Research and Design, 2017, vol. 126, pp. 278-285.CrossRefGoogle Scholar
  15. 15.
    15. S. Ren, Q. Zhao, L. Yao and Q. Liu, Crystengcomm, 2016, vol. 18, pp. 1393-1402.CrossRefGoogle Scholar
  16. 16.
    16. P. Wang, Q. Meng, H. Long and J. Li, High Temp Mat Pr-Isr, 2016, vol. 35, pp. 0001-0006.CrossRefGoogle Scholar
  17. 17.
    17. D. Liang, Z. Yan, X. Lv, J. Zhang and C. Bai, Metall Mater Trans B, 2017, vol. 48, pp. 573-581.CrossRefGoogle Scholar
  18. 18.
    18. N. Jakse, M. Bouhadja, J. Kozaily, J. Drewitt, L. Hennet, D. Neuville, H. Fischer, V. Cristiglio and A. Pasturel, Appl Phys Lett, 2012, vol. 101, pp. 21903.CrossRefGoogle Scholar
  19. 19.
    19. T. Wu, S. He, Y. Liang and Q. Wang, J Non-Cryst Solids, 2015, vol. 411, pp. 145-151.CrossRefGoogle Scholar
  20. 20.
    20. T. Wu, Q. Wang, C. Yu and S. He, J Non-Cryst Solids, 2016, vol. 450, pp. 23-31.CrossRefGoogle Scholar
  21. 21.
    H. Zheng, F. Shen, X. Jiang, G. Wei, Q. Wen; Iron and Steel, 2014, vol. 49, pp. 65-70.Google Scholar
  22. 22.
    22. X. Zhang, T. Jiang, X. Xue and B. Hu, Steel Res Int, 2016, vol. 87, pp. 87-94.CrossRefGoogle Scholar
  23. 23.
    23. L. Yao, S. Ren, X. Wang, Q. Liu, L. Dong, J. Yang and J. Liu, Steel Res Int, 2016, vol. 87, pp. 241-249.CrossRefGoogle Scholar
  24. 24.
    24. C. Wang, J. Zhang, K. Jiao and Z. Liu, Metall Res Technol, 2017, vol. 114, pp. 2051-2056.Google Scholar
  25. 25.
    25. M. Matsui, Phys Chem Minerals, 1996, vol. 23, pp. 9-15.CrossRefGoogle Scholar
  26. 26.
    26. S. Plimpton, JOURNAL OF COMPUTATIONAL, PHYSICS, 1995, vol. 117, pp. 1-19.CrossRefGoogle Scholar
  27. 27.
    27. S. Roux and V. Petkov, Journal of Applied Crystallography, 2010, vol. 43, pp. 181-185.CrossRefGoogle Scholar
  28. 28.
    28. G. Greaves, J Non-Cryst Solids, 1985, vol. 71, pp. 203-217.CrossRefGoogle Scholar
  29. 29.
    29. G. Greaves, A. Fontaine, P. Lagarde, D. Raoux and S. Gurman, Nature,1981, vol. 293, pp. 611-616.CrossRefGoogle Scholar
  30. 30.
    30. C. Losq, D. Neuville, W. Chen, P. Florian, D. Massiot, Z. Zhou and G. Greaves, Sci. Rep, 2017, vol. 7, pp. 16490.CrossRefGoogle Scholar
  31. 31.
    31. C. Jiang, K. Li, J. Zhang, Q. Qin, Z. Liu, W. Liang, M. Sun and Z. Wang, J. Mol. Liq., 2018, vol. 268, pp. 762-769.CrossRefGoogle Scholar
  32. 32.
    32. A. Einstein, James Joyce Quarterly, 1956, vol. 35, pp. 155-158.Google Scholar
  33. 33.
    33. N. Saito, N. Hori, K. Nakashima and K. Mori, Metall Mater Trans B, 2003, vol. 34, pp. 509-516.CrossRefGoogle Scholar
  34. 34.
    34. T. Iida, H. Sakai, Y. Kita and K. Shigeno, ISIJ Int, 2000, vol. 40, pp. S110-S114.CrossRefGoogle Scholar
  35. 35.
    35. C. Bale, E. Belisle, P. Chartrand, S. Decterov, G. Eriksson, A. Gheribi, K. Hack, I. Jung, Y. Kang, J. Melancon, A. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer and M. Van Ende, Calphad, 2016, vol. 54, pp. 35-53.CrossRefGoogle Scholar
  36. 36.
    J. van Dyk, F. Waanders, S. Benson, M. Laumb and K. Hack; Fuel, 2009, vol. 88, pp. 67-74.CrossRefGoogle Scholar
  37. 37.
    37. F. Müller-Plathe, Phys Rev E, 1999, vol. 59, pp. 4894.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Chunhe Jiang
    • 1
  • Kejiang Li
    • 1
    Email author
  • Jianliang Zhang
    • 1
    • 2
  • Qinghua Qin
    • 1
  • Zhengjian Liu
    • 1
  • Wang Liang
    • 1
  • Minmin Sun
    • 1
  • Ziming Wang
    • 1
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingP.R. China
  2. 2.School of Chemical EngineeringThe University of QueenslandSt LuciaAustralia

Personalised recommendations