Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 407–415 | Cite as

Direct Observation of Pure Cu and Cu-Ag Anode Passivation in H2SO4-CuSO4 Aqueous Solution by Channel Flow Double Electrode and Optical Microscopy

  • Yuma NinomiyaEmail author
  • Hideaki Sasaki
  • Takeshi Yoshikawa
  • Masafumi Maeda


The dissolution and passivation of pure Cu and Cu-5 wt pct Ag anodes in H2SO4-CuSO4 electrolyte were investigated by a direct observation method that combined the techniques of optical microscopy and channel flow double electrode. Linear sweep voltammetry of the anodes showed that the dissolution of Cu transited from the charge transfer-controlled reaction to the mass transfer-controlled reaction, followed by the passivation of the electrodes. The direct observation of the pure Cu anode revealed that Cu particles were generated on the surface and the particles fell away during passivation. On the other hand, a slime layer of Ag particles that adhered to the surface was generated during the dissolution of the Cu-5 wt pct Ag anode. The Cu-5 wt pct Ag anode was passivated with a lower current density than the pure Cu anode, which suggested that the morphology and adhesive characteristics of the slime on the anode affected the passivation. The direct observation method described herein is useful for understanding reactions on electrodes that undergo drastic changes in their surface morphology. Information obtained from this method can help with the development of new processes for the effective utilization of limited natural resources and energy, such as the recycling of Cu by electrorefining.



We would like to express our gratitude to Professor T. H. Okabe (Institute of Industrial Science, The University of Tokyo) for his advice on composing the manuscript and Mr. H. Kimura (The University of Tokyo) for technical assistance with the experiments. This study is a part of a research project by the Agency for Natural Resources and Energy. The authors are grateful for the financial support and advice on our experimental design from the Japan Oil, Gas and Metals National Corporation (JOGMEC).

Supplementary material

11663_2018_1447_MOESM1_ESM.mp4 (15.2 mb)
Supplementary material 1 (MP4 15590 kb)


  1. 1.
    1. J. Hait, R. K. Jana and S. K. Sanyal: Miner. Process. Extr. Metall., 2009, vol. 118, pp. 240-252.CrossRefGoogle Scholar
  2. 2.
    2. S. Abe, B. W. Burrows and V. A. Ettel: Can. Metall. Quart., 1980, vol. 19, pp. 289-296.CrossRefGoogle Scholar
  3. 3.
    3. F. Noguchi, Y. Iida, T. Nakamura and Y. Ueda: J. Min. Metall. Inst. Jpn., 1991, vol. 107, pp. 569-575.Google Scholar
  4. 4.
    4. M. Bounounghaz, M. Manzini and E. Ghali: Can. Metall. Quart., 1995, vol. 34, pp. 21-26.CrossRefGoogle Scholar
  5. 5.
    5. Z. H. Gu, J. Chen and T. Z. Fahidy: Hydrometallurgy, 1995, vol. 37, pp. 149-167.CrossRefGoogle Scholar
  6. 6.
    6. C. A. Möller, M. Bayanmunkh and B. Friedrich: World of Metallurgy - ERZMETALL, 2008, vol. 61, pp. 357-367.Google Scholar
  7. 7.
    7. W. Zeng, S. Wang and M. L. Free: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3178-3191.CrossRefGoogle Scholar
  8. 8.
    8. S. Abe and S. Goto: J. Min. Metall. Inst. Jpn., 1981, vol. 97, pp. 951-956.Google Scholar
  9. 9.
    9. S. Abe and S. Goto: J. Min. Metall. Inst. Jpn., 1981, vol. 97, pp. 1193-1198.Google Scholar
  10. 10.
    10. X. Cheng and J. B. Hiskey: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 610-616.CrossRefGoogle Scholar
  11. 11.
    11. J. B. Hiskey and X. Cheng: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 53-58.CrossRefGoogle Scholar
  12. 12.
    12. M. S. Moats and J. B. Hiskey: Can. Metall. Quart., 2000, vol. 39, pp. 297-306.CrossRefGoogle Scholar
  13. 13.
    13. M. S. Moats, J. B. Hiskey and D. W. Collins: Hydrometallurgy, 2000, vol. 56, pp. 255-268.CrossRefGoogle Scholar
  14. 14.
    14. M. O. Ilkhchi, H. Yoozbashizadeh and M. S. Safarzadeh: Chem. Eng. Process., 2007, vol. 46, pp. 757-763.CrossRefGoogle Scholar
  15. 15.
    15. M. Palaniappa, M. Jayalakshmi, P. M. Prasad and K. Balasubramanian: Int. J. Electrochem. Sci., 2008, vol. 3, pp. 452-461.Google Scholar
  16. 16.
    16. A.-M. Lafront, F. Safizadeh, E. Ghali and G. Houlachi: Electrochim. Acta, 2010, vol. 55, pp. 2505-2512.CrossRefGoogle Scholar
  17. 17.
    17. F. Safizadeh and E. Ghali: Electrochim. Acta, 2010, vol. 56, pp. 93-101.CrossRefGoogle Scholar
  18. 18.
    18. X. Cheng and J. B. Hiskey: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 393-398.CrossRefGoogle Scholar
  19. 19.
    19. Y. Konishi, Y, Nakamura, Y. Fukunaka, K. Tsukada and K. Hanasaki: Electrochim. Acta, 2003, vol. 48, pp. 2615-2624.CrossRefGoogle Scholar
  20. 20.
    20. E. A. Kucharska-Giziewicz and D. J. Mackinnon: J. Appl. Electrochem., 1996, vol. 26, pp.51-57.CrossRefGoogle Scholar
  21. 21.
    21. G. Jarjoura and G. J. Kipouros: Can. Metall. Quart., 2005, vol. 44, pp. 469-482.CrossRefGoogle Scholar
  22. 22.
    22. G. Jarjoura and G. J. Kipouros: J. Appl. Electrochem., 2006, vol. 36, pp. 691-701.CrossRefGoogle Scholar
  23. 23.
    23. T. T. Chen and J. E. Dutrizac: Metall. Trans. B, 1989, vol. 20, pp. 345-361.CrossRefGoogle Scholar
  24. 24.
    24. S. Northey, S. Mohr, G. M. Mudd, Z. Weng and D. Giurco: Resour. Conserv. Recy., 2014, vol. 83, pp. 190-201.CrossRefGoogle Scholar
  25. 25.
    25. B. H. Robinson: Sci. Total Environ., 2009, vol. 408, pp. 183-191.CrossRefGoogle Scholar
  26. 26.
    26. A. Anindya, D. R. Swinbourne, M. A. Reuter and R. W. Matusewicz: Miner. Process. Extr. Metall., 2013, vol. 122, pp. 165-173.CrossRefGoogle Scholar
  27. 27.
    27. M. Ghodrat, M. A. Rhamdhani, G. Brooks, S. Masood and G. Corder: J. Clean. Prod., 2016, vol. 126, pp. 178-190.CrossRefGoogle Scholar
  28. 28.
    H. Matsushima, H. Yatsuhashi, S. Kato, H. Nakano, S. Oue, T. Kamiya, H. Metsugi, H. Takiguchi and Y. Abe: Proceedings of the 9th International Copper Conference, 2016, Vol. 4 Electrowinning and Electrorefining, pp. 115–26.Google Scholar
  29. 29.
    29. W. Zeng, S. Wang and M. L. Free: J. Electrochem. Soc., 2017, vol. 164, pp. E233-241.CrossRefGoogle Scholar
  30. 30.
    30. T. Tsuru: Mat. Sci. Eng. A, 1991, vol. 146, pp. 1-14.CrossRefGoogle Scholar
  31. 31.
    31. E. O. Barnes, G. E. M. Lewis, S. E. C. Dale, F. Marken and R. G. Compton: Analyst, 2012, vol. 137, pp. 1068-1081.CrossRefGoogle Scholar
  32. 32.
    32. A. Nishikata, M. Itagaki, T. Tsuru and S. Haruyama: Corr. Sci., 1990, vol. 31, pp. 287-292.CrossRefGoogle Scholar
  33. 33.
    33. M. Itagaki, M. Tagaki, T. Mori and K. Watanabe: Corr. Sci., 1996, vol. 38, pp. 601-610.CrossRefGoogle Scholar
  34. 34.
    34. M. Itagaki, M. Tagaki, T. Mori and K. Watanabe: Corr. Sci., 1996, vol. 38, pp. 1109-1125.CrossRefGoogle Scholar
  35. 35.
    35. M. Itagaki, T. Mori and K. Watanabe: Corr. Sci., 1999, vol. 41, pp. 1955-1970.CrossRefGoogle Scholar
  36. 36.
    36. Y. Ninomiya, H. Sasaki and M. Maeda: Proc. MMIJ Annual Meeting, 2015, vol. 2, No. 2, [1802].Google Scholar
  37. 37.
    37. Y. Hoshi, T. Oda, I. Shitanda and M. Itagaki: J. Electrochem. Soc., 2017, vol. 164, pp. C450-452.CrossRefGoogle Scholar
  38. 38.
    T. Oda, Y. Hoshi, I. Shitanda, and M. Itagaki: Proc. JSCE Materials and Environments 2016, 2016, pp. 347–48.Google Scholar
  39. 39.
    M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, English ed., Pergamon Press Ltd., London, 1966, pp. 385–87, 394–96.Google Scholar
  40. 40.
    40. H. Matsuda: J. Electroanal. Chem. Interfacial Electrochem., 1968, vol. 16, pp. 153-164.Google Scholar
  41. 41.
    E. Mattson and J. O’M. Bockris: Trans. Faraday Soc., 1959, vol. 55, pp. 1586–1601.Google Scholar
  42. 42.
    42. R. P. Elliott, F. A. Shunk and W. C. Giessen: Bull. of Alloy Phase Diagr., 1980, vol. 1, pp. 41-45.CrossRefGoogle Scholar
  43. 43.
    43. S. Nagakura, S. Toyama and S. Oketani: Acta. Metall., 1966, vol. 14, pp. 73-75.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Yuma Ninomiya
    • 1
    Email author
  • Hideaki Sasaki
    • 1
  • Takeshi Yoshikawa
    • 1
  • Masafumi Maeda
    • 1
  1. 1.Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations