Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 210–218 | Cite as

Optimization of Mineralogy and Microstructure of Solidified Basic Oxygen Furnace Slag Through SiO2 Addition or Atmosphere Control During Hot-Stage Slag Treatment

  • Chunwei LiuEmail author
  • Shuigen Huang
  • Bart Blanpain
  • Muxing Guo


Valorization of basic oxygen furnace (BOF) slag is of significant importance for mitigation of the steel production’s environmental impact. The present work aims to investigate the influence of SiO2 addition and oxygen partial pressure on the mineralogical modification of a typical industrial BOF slag. The slag basicity (mass ratio of CaO/SiO2) was varied from 1.8 to 4.4 by mixing specific amounts of SiO2 with the master BOF slag. The original and modified slags were remelted and solidified under argon or air atmosphere followed by slow cooling. The experimental observations were then compared with the results of thermodynamic modeling to achieve a thorough understanding. With decreasing the basicity, free lime was eliminated, as it forms dicalcium silicate (Ca2SiO4). With increasing oxygen partial pressure, wustite was oxidized to hematite, which combined with free lime to form calcium aluminoferrite (C2AF). The effects of SiO2 addition and oxygen partial pressure were finally evaluated with respect to the energy consumption for the BOF slag valorization. The modified slag is suitable as a precursor for construction applications as binders.



Financial support from the Agency for Innovation by Science and Technology of Belgium (IWT, Grant No. 140514) is appreciated. One of the authors (CL) acknowledges the support of the China Scholarship Council (CSC, Grant No. 201306080002).


  1. 1.
    D.M. Proctor, K.A. Fehling, E.C. Shay, J.L. Wittenborn, J.J. Green, C. Avent, R.D. Bigham, M. Connolly, B. Lee, T.O. Shepker, and M.A. Zak: Environ. Sci. Technol., 2000, vol. 34, pp. 1576–82.CrossRefGoogle Scholar
  2. 2., accessed on Feb. 25, 2017.
  3. 3.
    M. Morone, G. Costa, A. Polettini, R. Pomi, and R. Baciocchi: Miner. Eng., 2014, vol. 59, pp. 82–90.CrossRefGoogle Scholar
  4. 4.
    L. Andreas, S. Diener, and A. Lagerkvist: Waste Manag., 2014, vol. 34, pp. 692–701.CrossRefGoogle Scholar
  5. 5.
    I. Herrmann, L. Andreas, S. Diener, and L. Lind: Waste Manag. Res., 2010, vol. 28, pp. 1114–21.CrossRefGoogle Scholar
  6. 6.
    A.S. Reddy, R.K. Pradhan, and S. Chandra: Int. J. Miner. Process., 2006, vol. 79, pp. 98–105.CrossRefGoogle Scholar
  7. 7.
    L. Kriskova, Y. Pontikes, L. Pandelaers, Ö. Cizer, P.T. Jones, K. Van Balen, and B. Blanpain: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1173–84.CrossRefGoogle Scholar
  8. 8.
    J.N. Murphy, T.R. Meadowcroft, and P.V. Barr: Can. Metall. Q., 1997, vol. 36, pp. 315–31.CrossRefGoogle Scholar
  9. 9.
    H. Motz and J. Geiseler: Waste Manag., 2001, vol. 21, pp. 285–93.CrossRefGoogle Scholar
  10. 10.
    G. Wang, Y.H. Wang, and Z.L. Gao: J. Hazard. Mater., 2010, vol. 184, pp. 555–60.CrossRefGoogle Scholar
  11. 11.
    R.M. Santos, D. Ling, A. Sarvaramini, M.X. Guo, J. Elsen, F. Larachi, G. Beaudoin, B. Blanpain, and T. Van Gerven: Chem. Eng. J., 2012, vol. 203, pp. 239–50.CrossRefGoogle Scholar
  12. 12.
    R.I. Iacobescu, A. Malfliet, L. Machiels, P.T. Jones, B. Blanpain, and Y. Pontikes: Waste Biomass Valoriz., 2014, vol. 5, pp. 343–53.CrossRefGoogle Scholar
  13. 13.
    S.A. Mikhail and A.M. Turcotte: Thermochim. Acta, 1995, vol. 263, pp. 87–94.CrossRefGoogle Scholar
  14. 14.
    J.B. Ferreira Neto, J.O.G. Faria, C. Fredericci, F. Chotoli, A.N.L. Silva, B.B. Ferraro, T.R. Ribeiro, A. Malynowskyj, V.A. Quarcioni, and A.A. Lotto: J. Sustain. Metall., 2016, vol. 2, pp. 13–27.CrossRefGoogle Scholar
  15. 15.
    B. Deo, J. Halder, B. Snoeijer, A. Overbosch, and R. Boom: Ironmak. Steelmak., 2005, vol. 32, pp. 54–60.CrossRefGoogle Scholar
  16. 16.
    M. Gautier, J. Poirier, F. Bodénan, G. Franceschini, and E. Véron: Int. J. Miner. Process., 2013, vol. 123, pp. 94–101.CrossRefGoogle Scholar
  17. 17.
    M. Salman, Ö. Cizer, Y. Pontikes, R.M. Santos, R. Snellings, L. Vandewalle, B. Blanpain, and K. Van Balen: Chem. Eng. J., 2014, vol. 246, pp. 39–52.CrossRefGoogle Scholar
  18. 18.
    J. Heulens, B. Blanpain, and N. Moelans: Chem. Geol., 2011, vol. 290, pp. 156–62.CrossRefGoogle Scholar
  19. 19.
    Y.Q. Sun, Z.T. Zhang, L.L. Liu, and X.D. Wang: Energies, 2014, vol. 7, pp. 1673–84.CrossRefGoogle Scholar
  20. 20.
    C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, C. Robelin, and S. Petersen: Calphad Comput. Coupl. Phase Diagr. Thermochem., 2009, vol. 33, pp. 295–311.CrossRefGoogle Scholar
  21. 21.
    C.W. Bale, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melancon, A.D. Pelton, and S. Petersen: Calphad, 2002, vol. 26, pp. 189–228.CrossRefGoogle Scholar
  22. 22.
    H.F.W. Taylor: Cement Chemistry, 2nd ed., Thomas Telford Publishing, London, 1997.CrossRefGoogle Scholar
  23. 23.
    C. Duée, C. Bourgel, E. Véron, M. Allix, F. Fayon, F. Bodénan, and J. Poirier: Cem. Concr. Res., 2015, vol. 73, pp. 207–14.CrossRefGoogle Scholar
  24. 24.
    R.W. Nurse, J.H. Welch, and W. Gutt: J. Chem. Soc., 1956, vol. 3, pp. 1077–83.Google Scholar
  25. 25.
    X.R. Wu, P. Wang, L.S. Li, Z.J. Wu, and R.H. Chen: Ironmak. Steelmak., 2011, vol. 38, pp. 185–88.CrossRefGoogle Scholar
  26. 26.
    S.N. Ghosh, P.B. Rao, A.K. Paul, and K. Raina: J. Mater. Sci., 1979, vol. 14, pp. 1554–66.CrossRefGoogle Scholar
  27. 27.
    H.M. Ludwig and W.S. Zhang: Cem. Concr. Res., 2015, vol. 78A, pp. 24–37.CrossRefGoogle Scholar
  28. 28.
    I. Nishinohara, N. Kase, H. Maruoka, S. Hirai, and H. Eba: ISIJ Int., 2015, vol. 55, pp. 616–22.CrossRefGoogle Scholar
  29. 29.
    D.Y. Wang, M.F. Jiang, C.J. Liu, Y. Min, Y.Y. Cui, J. Liu, and Y.C. Zhang: Steel Res. Int., 2012, vol. 83, pp. 189–96.CrossRefGoogle Scholar
  30. 30.
    Y. Satyoko, W.E. Lee, E. Parry, P. Richards, and I.G. Houldsworth: Ironmak. Steelmak., 2003, vol. 30, pp. 203–08.CrossRefGoogle Scholar
  31. 31.
    D. Moseley and F.P. Glasser: Cem. Concr. Res., 1981, vol. 11, pp. 559–65.CrossRefGoogle Scholar
  32. 32.
    D. Moseley and F.P. Glasser: J. Mater. Sci., 1982, vol. 17, pp. 2736–40.CrossRefGoogle Scholar
  33. 33.
    P.F. Lang and B.C. Smith: Dalt. Trans., 2010, vol. 39, pp. 7786–91.CrossRefGoogle Scholar
  34. 34.
    W.C. Allen and R.B. Snow: J. Am. Ceram. Soc., 1955, vol. 38, pp. 264–272.CrossRefGoogle Scholar
  35. 35.
    F. Abbattista, A. Burdese, and M. Maja: Rev. Int. Hautes Temp. Refract., 1975, vol. 12, pp. 337–42.Google Scholar
  36. 36.
    E. Schürmann and G. Kraume: Arch. Eisenhüttenwes., 1976, vol. 47, pp. 327–31.CrossRefGoogle Scholar
  37. 37.
    M. Allibert: Slag Atlas, Verlag Stahleisen GmbH, Dusseldorf, 1995.Google Scholar
  38. 38.
    D. Durinck, P.T. Jones, B. Blanpain, and P. Wollants: J. Am. Ceram. Soc., 2008, vol. 91, pp. 3342–48.CrossRefGoogle Scholar
  39. 39.
    C. Bodsworth and H.B. Bell: Physical Chemistry of Iron and Steel Manufacture, 2nd ed., Longmans, London, 1972.Google Scholar
  40. 40.
    J. Murphy, T. Meadwcroft, and P. Barr: Can. Metall. Q., 1997, vol. 6, pp. 315–31.CrossRefGoogle Scholar
  41. 41.
    S. Andersson and L. Dzhavadov: J. Phys. Condens. Matter, 1992, vol. 4, pp. 6209–16.CrossRefGoogle Scholar
  42. 42.
    D. Gaskell: An Introduction to Transport Phenomena in Materials Engineering, 2nd ed., Momentum Press, 2013.Google Scholar
  43. 43.
    L. Pandelaers, A.D. Alfonso, P.T. Jones, and B. Blanpain: ISIJ Int., 2013, vol. 53, pp. 1106–11.CrossRefGoogle Scholar
  44. 44.
    R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena, John Wiley & Sons, 2007.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Chunwei Liu
    • 1
    • 2
    Email author
  • Shuigen Huang
    • 3
  • Bart Blanpain
    • 3
  • Muxing Guo
    • 3
  1. 1.Department of Materials EngineeringKU LeuvenLeuvenBelgium
  2. 2.National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China
  3. 3.Department of Materials EngineeringKU LeuvenLeuvenBelgium

Personalised recommendations