Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 543–554 | Cite as

Scale-Adaptive Simulation of Transient Two-Phase Flow in Continuous-Casting Mold

  • Zhongqiu LiuEmail author
  • Alexander Vakhrushev
  • Menghuai Wu
  • Abdellah Kharicha
  • Andreas Ludwig
  • Baokuan Li


Scale-adaptive simulation (SAS) of the transient gas–liquid two-phase flow in a laboratory-scale continuous-casting mold is presented. The main objective is to investigate the applicability of the scale-adaptive unsteady Reynolds-averaged Navier–Stokes turbulent model (URANS SAS) for predicting the transient multiscale turbulent structures in a two-phase flow. Good quantitative agreements with the experimental data and the large eddy simulation (LES) results are obtained both for the time-averaged velocity field and for the transient turbulent characteristics. The introduction of the von Karman length-scale into the turbulence-scale equation allows the SAS model to dynamically adjust to the resolved turbulent structures. The LES-like pulsating behavior of the air gas and the large-scale liquid eddy magnitudes in the unsteady regions of flow field are captured by the SAS model. The classical − 5/3 law of power spectrum density (PSD) of the axial velocity is kept properly for the single-phase turbulent flow. For two-phase flow, the decay of PSD is too steep at the high-frequency region; the predicted PSD obtained with SAS is damped stronger than that estimated by LES. The SAS model offers an attractive alternative to the existing LES approach or to the other hybrid RANS/LES models for strongly unsteady flows.



This work was financially supported by the Fundamental Research Funds for the Central Universities of China (No. N162504009), the National Natural Science Foundation of China (Nos. 51604070 and 51574068) and the China Scholarship Council (No. 201706085027). The financial supports by the RHI-Magnesita AG; the Austrian Federal Ministry of Economy, Family, and Youth; and the National Foundation for Research, Technology, and Development within the framework of the Christian Doppler Laboratory for Advanced Process Simulation of Solidification and Melting are gratefully acknowledged.


  1. 1.
    M. Iguchi and N. Kasai: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 453-60.CrossRefGoogle Scholar
  2. 2.
    B.G. Thomas, L.J. Mika, and F.M. Najjar: Metall. Mater. Trans. B, 1990, vol. 21, pp. 387-400.CrossRefGoogle Scholar
  3. 3.
    L. Zhang, S. Yang, K. Cai, J. Li, X. Wan, and B.G. Thomas: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 63–83.CrossRefGoogle Scholar
  4. 4.
    A.N. Kolmogorov: Dokl. Akad. Nauk SSSR, 1941, vol. 32, pp. 16-18.Google Scholar
  5. 5.
    A. Issakhov: Journal of Computer and Communications, 2013, vol. 1, pp. 1-5.CrossRefGoogle Scholar
  6. 6.
    S.B. Pope: Turbulent Flows, Cambridge University Press, Cambridge, 2000, pp. 346-50.CrossRefGoogle Scholar
  7. 7.
    Y. Miki and S. Takeuchi: ISIJ Int., 2003, vol. 43, pp. 1548-55.CrossRefGoogle Scholar
  8. 8.
    Q. Yuan, S. Sivaramkrishnan, S.P. Vanka, and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35, pp. 967-82.CrossRefGoogle Scholar
  9. 9.
    A. Ramos-Banderas, R. Sánchez-Perez, R.D. Morales, J. Palafox-ramos, L. Demedices-Garcia, and M. Diaz-cruz: Metall. Mater. Trans. B, 2004, vol. 35, pp. 449-60.CrossRefGoogle Scholar
  10. 10.
    C. Real, R. Miranda, C. Vilchis, M. Barron, L. Hoyos, and J. Gonzalez: ISIJ Int., 2006, vol. 46, pp. 1183-91.CrossRefGoogle Scholar
  11. 11.
    Z.Q. Liu, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 675-97.CrossRefGoogle Scholar
  12. 12.
    F.R. Menter: Inter. J. Computational Fluid, 2009, vol. 23, pp.305-16.CrossRefGoogle Scholar
  13. 13.
    F.R. Menter and Y. Egorov: Flow Turbulence Combust, 2010, vol. 85, pp. 113-38.CrossRefGoogle Scholar
  14. 14.
    Y. Egorov, F.R. Menter, R. Lechner, and D. Cokljat: Flow Turbulence Combust, 2010, vol. 85, pp. 139-65.CrossRefGoogle Scholar
  15. 15.
    B.G. Thomas, X. Huang and R. C. Suaaman: Metall. Mater. Trans. B, 1994, vol. 25, pp. 527.CrossRefGoogle Scholar
  16. 16.
    D. Creech: Master’s thesis, University of Illinois at Urbana Champaign, Urbana, IL, 1999.Google Scholar
  17. 17.
    H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32, pp. 253-67.CrossRefGoogle Scholar
  18. 18.
    A. Ramos-Banderas, R.D. Morales, R. Sanchez-Perez, L. Garcia-Demedices, and G. Solorio-Diaz: Int. J. Multiphase Flow, 2005, vol. 31, pp. 643-65.CrossRefGoogle Scholar
  19. 19.
    J. Klostermann, H. Chaves, and R. Schwarze: Steel Research Int., 2007, vol. 78, 595-601.CrossRefGoogle Scholar
  20. 20.
    J. O. Hinze: Turbulence. McGraw-Hill Publishing Co., New York, 1975.Google Scholar
  21. 21.
    Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2014, vol. 54, pp. 1314-23.CrossRefGoogle Scholar
  22. 22.
    Q. Yuan, T. Shi, S.P. Vanka, and B.G. Thomas: Computational Modeling of Materials, Warrendale, PA, Minerals and Metals Processing, 2001, pp. 491–500.Google Scholar
  23. 23.
    Z.Q. Liu, F.S. Qi, B.K. Li, and S.C.P. Cheung: Int. J. Multiphase Flow, 2016, vol. 79, pp. 190-201.CrossRefGoogle Scholar
  24. 24.
    Z.Q. Liu, F.S. Qi, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 933-52.CrossRefGoogle Scholar
  25. 25.
    Z.Q. Liu, B.K. Li, F.S. Qi, and S.C.P. Cheung: Powder Technology, 2017, vol. 319, pp. 139-47.CrossRefGoogle Scholar
  26. 26.
    K. Timmel, C. Kratzsch, A. Asad, D. Schurmann, R. Schwarze, and S. Eckert: IOP Conference Series: Materials Science and Engineering, 2017, vol. 228, p. 012019.
  27. 27.
    S. Sarkar, V. Singh, S.K. Ajmani, R.K. Singh, and E.Z. Chacko: ISIJ Int., 2018, vol. 58, pp. 68-77.CrossRefGoogle Scholar
  28. 28.
    Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2013, vol. 53, pp. 484-92.CrossRefGoogle Scholar
  29. 29.
    Z.Q. Liu and B.K. Li: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1833-49.CrossRefGoogle Scholar
  30. 30.
    B.G. Thomas: Steel Research Int., 2018, vol. 89, 1700312.CrossRefGoogle Scholar
  31. 31.
    J. Frohlich and D. von Terzi: Progress in Aerospace Sciences, 2008, vol. 44, pp. 349-77.CrossRefGoogle Scholar
  32. 32.
    T. Ma, D. Lucas, T. Ziegenhein, J. Frohlich, and N.G. Deen: Chem. Eng. Sci., 2015, vol. 131, pp. 101-08.CrossRefGoogle Scholar
  33. 33.
    C. Kratzsch, A. Asad and R. Schwarze: J. Manuf. Sci. Prod., 2015, vol. 15, pp. 49-57.Google Scholar
  34. 34.
    H.A. Jakobsen, B.H. Sannaes, S. Grevskott, and H.F. Svendsen: Ind. Eng. Chem. Res., 1997, vol. 36, pp. 4052-74.CrossRefGoogle Scholar
  35. 35.
    M.T. Dhotre, B. Niceno, and B.L. Smith: Chem. Eng. J., 2008, vol. 136, pp. 337-48.CrossRefGoogle Scholar
  36. 36.
    Y. Sato, M. Sadatomi, and K. Sekiguchi: Int. J. Multiphase Flow, 1975, vol. 2, pp.79-87.CrossRefGoogle Scholar
  37. 37.
    F.R. Menter: AIAA Paper #93-2906, 24th Fluid Dynamics Conference, July 1993.Google Scholar
  38. 38.
    J. Smagorinsky: Month. Weather Rev., 1963, vol. 91, pp. 99-165.CrossRefGoogle Scholar
  39. 39.
    M. Germano, U. Piomelli, P. Moin, and W.H. Cabot: Phys. Fluids A, 1991, vol. 3, pp.1760-65.CrossRefGoogle Scholar
  40. 40.
    D.K. Lilly: Phys. Fluids A, 1992, vol. 4, pp. 633-35.CrossRefGoogle Scholar
  41. 41.
    M. Ishii and N. Zuber: AIChE J, 1979, vol. 25, pp. 843-55.CrossRefGoogle Scholar
  42. 42.
    D.A. Drew and R.T. Lahey: Int. J. Multiphase Flow, 1987, vol. 13, pp. 113-21.CrossRefGoogle Scholar
  43. 43.
    J.C.R. Hunt, A.A. Wray, and P. Moin: Center for Turbulence Research Report, 1988, pp. 193–208.Google Scholar
  44. 44.
    D.J. Van Cauwenberge, C.M. Schietekat, J. Floré, K M. Van Geem, and G.B. Marin: Chem. Eng. J., 2015, vol. 282, pp. 66-76.CrossRefGoogle Scholar
  45. 45.
    Z.Q. Liu and B.K. Li: Chem. Eng. J., 2018, vol. 338, pp. 465-77.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Zhongqiu Liu
    • 1
    • 2
    Email author
  • Alexander Vakhrushev
    • 2
  • Menghuai Wu
    • 2
  • Abdellah Kharicha
    • 2
  • Andreas Ludwig
    • 3
  • Baokuan Li
    • 1
  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.Christian Doppler Laboratory for Advanced Process Simulation of Solidification and MeltingMontanuniversität LeobenLeobenAustria
  3. 3.Chair of Simulation and Modeling of Metallurgical Processes Department of MetallurgyMontanuniversität LeobenLeobenAustria

Personalised recommendations