Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 531–542 | Cite as

High-Temperature Properties and Microstructural Stability of the AISI H13 Hot-Work Tool Steel Processed by Selective Laser Melting

  • Mei Wang
  • Wei Li
  • Yan Wu
  • Shuai Li
  • Chao Cai
  • Shifeng WenEmail author
  • Qingsong WeiEmail author
  • Yusheng Shi
  • Fuyuan Ye
  • Zhiping Chen
Article
  • 137 Downloads

Abstract

The microstructural stabilities, softening resistance, and high-temperature tensile properties of the H13 hot-work tool steel by selective laser melting (SLM) were systematically studied. A series of tempering procedures were performed on the as-SLMed specimens. Afterwards, the mechanism of softening resistance behavior was discussed based on the XRD, SEM, EBSD observations, hardness measurements, and high-temperature tensile tests. It was found that the as-SLMed H13 consisted of α-iron and γ-iron. The carbide-stabilizing elements aggregated as the cell-like substructures for the rapid solidification of the SLM process. After the softening resistance treatment, the retained austenite transformed to ferrite and carbide mixtures. The cell-like substructures dissolved slowly into the matrix when the temperature was below 550 °C. These factors increased the hardness and retarded the softening of the material. When the temperature was 600 °C, the microstructural constituents transformed to soft ferrite and globular carbides, which lead to a considerable decrease of the hardness. Due to the grain refinement, solid solution strengthening, and residual stress, the as-SLMed H13 exhibited better mechanical properties than that of the wrought counterparts.

Notes

Acknowledgments

This work was supported by Fundamental Research Funds for the Central Universities (No. 2015ZDTD028), Hubei Science and Technology Innovation Project (No. 2014AAA020), Wuhan Key Technology Project (No. 2015010202010088), and the Academic Frontier Youth Team of Huazhong University of Science and Technology (HUST), Science and Technology Major Project of Guangdong Province (No. 2017B090911007), and Science and Technology Major Project of Foshan City (No. 2016AG101253). The authors would also like to thank the State key Laboratory of Materials Processing and Die and Mould Technology, and the Analysis and Testing Center of HUST.

References:

  1. 1.
    1. B. AlMangour, D. Grzesiak and J.M. Yang: Mater. Des., 2016, vol. 96, pp. 150-161.CrossRefGoogle Scholar
  2. 2.
    2. A. Medvedeva, J. Bergström, S. Gunnarsson and J. Andersson: Mater. Sci. Eng. A, 2009, vol. 523, pp. 39-46.CrossRefGoogle Scholar
  3. 3.
    3. R. Mertens, B. Vrancken, N. Holmstock, Y. Kinds, J.-P. Kruth and J. Van Humbeeck: Phys. Procedia, 2016, vol. 83, pp. 882-890.CrossRefGoogle Scholar
  4. 4.
    4. G. Telasang, J. D. Majumdar, G. Padmanabham, M. Tak and I. Manna: Surf. Coat Technol., 2014, vol. 258, pp. 1108-1118.CrossRefGoogle Scholar
  5. 5.
    G. Roberts, G. Krauss, and R. Kennedy: Tool Steels, 5th ed., ASM Inter., Mater. Park, OH, 1998.Google Scholar
  6. 6.
    X. Zhao, Q. Wei, B. Song, Y. Liu, X.W. Luo, S. Wen, and Y. Shi: Mater. Manuf. Process., 2015, vol. 30, pp. 1283–89.Google Scholar
  7. 7.
    7. M. Mazur, M. Leary, M. McMillan, J. Elambasserial and M. Brandt: Rapid Prototyping J., 2016, vol. 22, pp. 504-518.CrossRefGoogle Scholar
  8. 8.
    J.-P. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, and J. Van Humbeeck: in 16th Proc. Int. Symp. on Electromach, (ISEM XVI) edition, Apr. 2010, SHH, China.Google Scholar
  9. 9.
    9. D. Wang, C. Song, Y. Yang and Y. Bai: Mater. Des., 2016, vol. 100, pp. 291-299.CrossRefGoogle Scholar
  10. 10.
    10. N. Read, W. Wang, K. Essa and M. M. Attallah: Mater. Des., 2015, vol. 65, pp. 417-424.CrossRefGoogle Scholar
  11. 11.
    11. J.-P. Kruth, G. Levy, F. Klocke and T. Childs: CIRP Annals-Manuf. Technol, 2007, vol. 56, pp. 730-759.CrossRefGoogle Scholar
  12. 12.
    12. B. Vandenbroucke and J.-P. Kruth: Rapid Prototyping J., 2007, vol. 13, pp. 196-203.CrossRefGoogle Scholar
  13. 13.
    R. Păcurar, A. Păcurar, and N. Bâlc: in ISI Proc. WSEAS Network Conf., Recent Adv. Eng. Mech. Struct. Urban Planning, February, 2013.Google Scholar
  14. 14.
    14. Y. Lu, S. Wu, Y. Gan, T. Huang, C. Yang, J. L. Junjie and J. Lin: Opt. Laser Technol., 2015, vol. 75, pp. 197-206.CrossRefGoogle Scholar
  15. 15.
    15. P. Laakso, T. Riipinen, A. Laukkanen, T. Andersson, A. Jokinen, A. Revuelta and K. Ruusuvuori: Phys. Procedia, 2016, vol. 83, pp. 26-35.CrossRefGoogle Scholar
  16. 16.
    16. M. J. Holzweissig, A. Taube, F. Brenne, M. Schaper and T. Niendorf: Metall: Mater. Trans. B, 2015, vol. 46, pp. 545-549.CrossRefGoogle Scholar
  17. 17.
    R.C. Weast, M.J. Astle, and W.H. Beyer: CRC Handbook of Chem. and Phy., CRC press, Florida, 1989, p. E110.Google Scholar
  18. 18.
    19. X. Zhao, B. Song, Y. Zhang, X. Zhu, Q. Wei and Y. Shi: Mater. Sci. Eng. A, 2015, vol. 647, pp. 58-61.CrossRefGoogle Scholar
  19. 19.
    20. K. Saeidi, X. Gao, Y. Zhong and Z. Shen: Mater. Sci. Eng. A, 2015, vol. 625, pp.221-229.CrossRefGoogle Scholar
  20. 20.
    A.I.H. Committee: ASM Hand Book, vol. 1, Materials Park, OH, 1996, pp. 320, 1155, 1147, 1770, 2203.Google Scholar
  21. 21.
    23. B. W. Henry and W. L. Bragg: Proc. R. Soc. London. Series A, 1913, vol. 88, pp. 428-438.CrossRefGoogle Scholar
  22. 22.
    A.I.H. Committee: ASM Handbook-Heat Treating, Mater. Park, OH, 1991, p. 33.Google Scholar
  23. 23.
    H. Bhadeshia, and R. Honeycombe: Steels: Microstructure and Properties, 3rd ed., Butterworth-Heinemann, UK, 2006, pp. 10, 17–35, 96, 184, 193–95.Google Scholar
  24. 24.
    26. J. J. S. Dilip, G. D. J. Ram, T. L. Starr and B. Stucker, Additive Manufacturing, 2017, vol. 13, pp. 49-60.CrossRefGoogle Scholar
  25. 25.
    27. D. D. Gu, W. Meiners, K. Wissenbach and R. Poprawe: Int. Mater. Rev., 2012, vol. 57, pp. 133-164.CrossRefGoogle Scholar
  26. 26.
    28. L. Hao and S. Dadbakhsh: Chin. J. Lasers, 2009, vol. 36, pp. 3192-3203.CrossRefGoogle Scholar
  27. 27.
    29. Z.Q. Cui and Y.C. Tan: Machinery Ind. Press, 2016, vol.2, pp. 249-254.Google Scholar
  28. 28.
    30. K. Saeidi, X. Gao, F. Lofaj, L. Kvetková and Z.J. Shen, J. Alloys Comp., 2015, vol. 633, pp. 463-469.CrossRefGoogle Scholar
  29. 29.
    ASSAB 8407 SUPREME.PDF. (ASSAB Pacific Pte Ltd., 2018) http://www.assab.com/media/ASSAB_8407_Supreme.pdf. Accessed 10 Jan 2018.
  30. 30.
    32. D. Gu and W. Meiners: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7585-7592.CrossRefGoogle Scholar
  31. 31.
    33. B. Song, S. Dong, Q. Liu, H. Liao and C. Coddet: Mater. Des., 2014, vol. 54, pp. 727-733.CrossRefGoogle Scholar
  32. 32.
    34. D. Gu, Y.-C. Hagedorn, W. Meiners, G. Meng, R. J. S. Batista, K. Wissenbach and R. Poprawe, Acta Mater., 2012, vol. 60, pp. 3849-3860.CrossRefGoogle Scholar
  33. 33.
    35. Z. Zhang, D. Delagnes and G. Bernhart: Mater. Sci. Eng. A, 2014, vol. 380, pp. 222-230.CrossRefGoogle Scholar
  34. 34.
    36. X. Tao, L. Z. Han and J. Gu: Mater. Sci. Eng. A, 2014, vol. 618, pp. 189-204.CrossRefGoogle Scholar
  35. 35.
    37. D. Tomus, Y. Tian, P. A. Rometsch, M. Heilmaier and X. Wu: Mater. Sci. Eng. A, 2016, vol. 667, pp. 42-53.CrossRefGoogle Scholar
  36. 36.
    38. W. Li, J. Liu, Y. Zhou, S. Wen, Q. Wei, C. Yan and Y. Shi: Scripta Mater., 2016, vol. 118, pp. 13-18.CrossRefGoogle Scholar
  37. 37.
    39. A. H. Cottrell and B. A. Bilby: Process. Phys. Soci. Section. A, 1949, vol. 62, pp. 49.CrossRefGoogle Scholar
  38. 38.
    40. S. Wen, S. Li, Q. Wei, C. Yan, S. Zhang and Y. Shi: J. Mater. Process. Technol., 2014, vol. 214, pp. 2660-2667.CrossRefGoogle Scholar
  39. 39.
    D.L. Hu and F. Zhang: Ternary Alloy Phase Diag., Northwestern Polytech. Uni. Press, Shanxi, China, 1995, p. 130.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Mei Wang
    • 1
  • Wei Li
    • 1
  • Yan Wu
    • 2
  • Shuai Li
    • 1
  • Chao Cai
    • 1
  • Shifeng Wen
    • 1
    Email author
  • Qingsong Wei
    • 1
    Email author
  • Yusheng Shi
    • 1
  • Fuyuan Ye
    • 3
  • Zhiping Chen
    • 3
  1. 1.State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and TechnologyHuazhong University of Science and TechnologyWuhanP.R. China
  2. 2.Department of Industrial EngineeringUniversity of LouisvilleLouisvilleUSA
  3. 3.Guangdong Kelon Mould Co., LtdFoshanP.R. China

Personalised recommendations