Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 480–490 | Cite as

Zinc Removal from Basic Oxygen Steelmaking Filter Cake by Leaching with Organic Acids

  • Jingxiu WangEmail author
  • Zhe Wang
  • Zhongzhi Zhang
  • Guangqing Zhang
Article
  • 167 Downloads

Abstract

The dust generated from the basic oxygen steelmaking (BOS) process is a waste material mainly containing iron that cannot be recycled owing to its high zinc content. In this study, the leaching effects of different organic acids are compared, with the aim of determining an acid that selectively leaches and removes zinc from BOS dust, so that the waste material can be recycled into ironmaking and steelmaking processes in order to substitute part of the raw materials of steelmaking. The dust used in this study was scrubbed and collected in the form of a filter cake. The acids tested were oxalic, citric, acetic, propionic, butyric, and valeric acids. Butyric acid was found to be the most effective, with a high zinc extraction level of 49.7 pct and a low iron level of only 2.5 pct. Oxalic acid was the least effective leaching reagent for both zinc and iron extractions, owing to the formation of zinc and iron oxalate precipitates following metal dissolution. The filter cake and leached residues were characterized by chemical analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy with energy dispersive spectroscpopy.

Notes

Acknowledgments

The authors acknowledge the awarding of the CSC scholarship by the China Scholarships Council and the IPTA scholarship by the University of Wollongong to Miss Jingxiu Wang. The BOS filter cake sample used in this work was supplied by BlueScope Steelmaking Ltd. The authors would like to thank Dr. Linda Tie and Dr. Dongqi Shi for their assistance in the ICP-OES and XPS analyses. The SEM/EDS and XPS analyses were completed at the Electron Microscopy Centre, University of Wollongong.

References

  1. 1.
    1. S. Kelebek, S. Yörük, and B. Davis: Miner. Eng., 2004, vol. 17, pp. 285-91.CrossRefGoogle Scholar
  2. 2.
    2. J. Vereš, Š. Jakabský, and M. Lovás: Miner. Slovaca, 2010, vol. 42, pp. 369-74.Google Scholar
  3. 3.
    3. Z. Wang, D. Pinson, S. Chew, B. J. Monaghan, H. Rogers, and G. Zhang: ISIJ Int., 2016, vol. 56, pp. 505-12.CrossRefGoogle Scholar
  4. 4.
    4. M.L. Sammut, J. Rose, A. Masion, E. Fiani, M. Depoux, A. Ziebel, J.L. Hazemann, O. Proux, D. Borschneck, and Y. Noack: Chemosphere, 2008, vol. 70, pp. 1945-51.CrossRefGoogle Scholar
  5. 5.
    5. P. Dvorak and J. Jandova: Waste Forum, 2002, vol. 6, pp. 22-24.Google Scholar
  6. 6.
    6. Z.H. Trung, F. Kukurugya, Z. Takacova, D. Orac, M. Laubertova, A. Miskufova, and T. Havlik: J. Hazard. Mater., 2011, vol. 192, pp. 1100-07.CrossRefGoogle Scholar
  7. 7.
    7. L.M. Wu: Ironmaking Steelmaking, 1999, vol. 26, pp. 372-77.CrossRefGoogle Scholar
  8. 8.
    8. K. Gargul and B. Boryczko: Arch. Civil Mech. Eng., 2015, vol. 15, pp. 179-87.CrossRefGoogle Scholar
  9. 9.
    9. J. Steer, C. Grainger, A. Griffiths, M. Griffiths, T. Heinrich, and A. Hopkins: Ironmaking Steelmaking, 2014, vol. 41, pp. 61-66.CrossRefGoogle Scholar
  10. 10.
    10. S.M. Smith, X. Zhou, and C.L. Nassaralla: Iron Steelmaker, 2000, vol. 27, pp. 69-76.CrossRefGoogle Scholar
  11. 11.
    11. L. Wang, X. Lu, X. Wei, Z. Jiang, S. Gu, Q. Gao, and Y. Huang: J. Anal. At. Spectrom., 2012, vol. 27, pp. 1667-73.CrossRefGoogle Scholar
  12. 12.
    12. V. Montenegro, P. Oustadakis, P.E. Tsakiridis, and S. Agatzini-Leonardou: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1058-69.CrossRefGoogle Scholar
  13. 13.
    13. H. Shalchian, A. Rafsanjani-Abbasi, J. Vahdati-Khaki, and A. Babakhani: Metall. Mater. Trans. B, 2014, vol. 46, pp. 38-47.Google Scholar
  14. 14.
    JM Steer and AJ Griffiths: Hydrometallurgy, 2013, vol. 140, pp. 34-41.CrossRefGoogle Scholar
  15. 15.
    15. F. Anjum, H.N. Bhatti, M.A. Ghauri, I.A. Bhatti, M. Asgher, and M.R. Asi: Afr. J. Biotechnol., 2009, vol. 8, pp. 5038-45.Google Scholar
  16. 16.
    16. H.Y. Wu and Y.P. Ting: Enzyme Microb. Technol., 2006, vol. 38, pp. 839-47.CrossRefGoogle Scholar
  17. 17.
    17. S. Nagib and K. Inoue: Hydrometallurgy, 2000, vol. 56, pp. 269-92.CrossRefGoogle Scholar
  18. 18.
    18. J. Han, W. Liu, W. Qin, Y. Zheng, and H. Luo: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 686-93.CrossRefGoogle Scholar
  19. 19.
    19. T. Miki, R. Chairaksa-Fujimoto, K. Maruyama, and T. Nagasaka: J. Hazard. Mater., 2016, vol. 302, pp. 90-96.CrossRefGoogle Scholar
  20. 20.
    20. A.A. Tahir and K.U. Wijayantha: J. Photochem. Photobio. A: Chem., 2010, vol. 216, pp. 119-25.CrossRefGoogle Scholar
  21. 21.
    21. F. Pan, Y. Guo, F. Cheng, T. Fa, and S. Yao: Chin. Phys. B., 2011, vol. 20, pp. 127501.CrossRefGoogle Scholar
  22. 22.
    22. M. Li, B. Peng, L. Chai, N. Peng, X. Xie, and H. Yan: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 1480-88.CrossRefGoogle Scholar
  23. 23.
    23. R. Dom, A.S. Chary, R. Subasri, N.Y. Hebalkar, and P.H. Borse: Int. J. Energy Res., 2015, vol. 39, pp. 1378-90.CrossRefGoogle Scholar
  24. 24.
    D.D. Perrin, B. Dempsey, and E.P. Serjeant: pKa Prediction for Organic Acids and Bases, 1st ed., Chapman & Hall, New York, 1981.Google Scholar
  25. 25.
    25. X.S. Jing, F.Q. Liu, X. Yang, P.P. Ling, L.J. Li, C. Long, and A.M. Li: J. Hazard. Mater., 2009, vol. 167, pp. 589-96.CrossRefGoogle Scholar
  26. 26.
    26. S.O. Lee, T. Tran, Y.Y. Park, S.J. Kim, and M.J. Kim: Int. J. Miner. Process., 2006, vol. 80, pp. 144-52.CrossRefGoogle Scholar
  27. 27.
    27. D. Panias, M. Taxiarchou, I. Paspaliaris, and A. Kontopoulos: Hydrometallurgy, 1996, vol. 42, pp. 257-65.CrossRefGoogle Scholar
  28. 28.
    28. I. De Michelis, F. Ferella, E. Karakaya, F. Beolchini, and F. Veglio: J. Power Sources, 2007, vol. 172, pp. 975-83.CrossRefGoogle Scholar
  29. 29.
    29. M. Irannajad, M. Meshkini, and A.R. Azadmehr: Physicochem. Probl. Min. Process., 2013, vol. 49, pp. 547-55.Google Scholar
  30. 30.
    30. M.D. Del and S. Babel: Water Sci. Technol., 2006, vol. 54, pp. 129-35.Google Scholar
  31. 31.
    31. Š. Langová and D. Matýsek: Hydrometallurgy, 2010, vol. 101, pp. 171-73.CrossRefGoogle Scholar
  32. 32.
    32. T. Havlik, B. Friedrich, and S. Stopić: Erzmetall, 2004, vol. 57, pp. 113-20.Google Scholar
  33. 33.
    33. J. Vereš, Š. Jakabský, and M. Lovás: Acta Montanistica Slovaca, 2011, vol. 16, pp. 185-91.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Jingxiu Wang
    • 1
    Email author
  • Zhe Wang
    • 2
  • Zhongzhi Zhang
    • 3
  • Guangqing Zhang
    • 1
  1. 1.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia
  2. 2.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  3. 3.State Key Laboratory of Heavy Oil Processing, Faculty of Chemical EngineeringChina University of PetroleumBeijingChina

Personalised recommendations