Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 52–76 | Cite as

Effect of Nozzle Port Angle on Transient Flow and Surface Slag Behavior During Continuous Steel-Slab Casting

  • Seong-Mook Cho
  • Brian G. ThomasEmail author
  • Seon-Hyo Kim
Article
  • 239 Downloads

Abstract

Undesirable flow variations can cause severe instabilities at the interface between liquid mold flux and molten steel across the mold top-region during continuous steel casting, resulting in surface defects in the final products. A three-dimensional Large Eddy Simulation (LES) model using the volume of fluid method for the slag and molten steel phases is validated with plant measurements, and applied to gain new insights into the effects of nozzle port angle on transient flow, top slag/steel interface movement, and slag behavior during continuous slab casting under nominally steady conditions. Upward-angled ports produce a single-roll flow pattern with lower surface velocity, due to rapid momentum dissipation of the spreading jet. However, strong jet wobbling from the port leads to greater interface variations. Severe level drops allow easy entrapment of liquid flux by the solidifying steel shell at the meniscus. Sudden level rises may also be detrimental, leading to overflow of the solidified meniscus region. Downward-angled ports produce a classic double-roll pattern with less jet turbulence and a more stable interface everywhere except near the narrow faces. Finally, the flow patterns, surface velocity, and level predicted from the validated LES model are compared with steady-state standard k-ε model predictions.

Notes

Acknowledgments

The authors thank POSCO for their assistance in collecting plant data and financial support (Grant No. 4.0011721.01), and Dr. Hyun-Jin Cho and Dr. Ji-Joon Kim, POSCO for help with the plant measurements. Support from the Continuous Casting Center at Colorado School of Mines, the Continuous Casting Consortium at University of Illinois at Urbana-Champaign, and the National Science Foundation GOALI grant (Grant No. CMMI 18-08731) are gratefully acknowledged. Provision of FLUENT licenses through the ANSYS Inc. academic partnership program is also much appreciated. This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

Supplementary material

11663_2018_1439_MOESM1_ESM.avi (68.9 mb)
Supplementary material 1 Jet flow wobbling in mold center-middle plane with + 15 deg (up) ports. Supplementary material 1 (AVI 70531 kb)
11663_2018_1439_MOESM2_ESM.avi (69.6 mb)
Supplementary material 2 Jet flow wobbling in mold center-middle plane with − 30 deg (down) ports. Supplementary material 2 (AVI 71226 kb)
11663_2018_1439_MOESM3_ESM.avi (92.3 mb)
Supplementary material 3 Transient jet flow pattern and liquid-slag layer motion in the mold for + 15 deg (up) ports. Supplementary material 3 (AVI 94486 kb)
11663_2018_1439_MOESM4_ESM.avi (84.6 mb)
Supplementary material 4 Transient jet flow pattern and liquid-slag layer motion in the mold for − 30 deg (down) ports. Supplementary material 4 (AVI 86661 kb)
11663_2018_1439_MOESM5_ESM.avi (42.5 mb)
Supplementary material 5 Transient slag/steel interface profile on IR in the mold for + 15 deg (up) ports. Supplementary material 5 (AVI 43553 kb)
11663_2018_1439_MOESM6_ESM.avi (45.5 mb)
Supplementary material 6 Transient slag/steel interface profile on IR in the mold for − 30 deg (down) ports. Supplementary material 6 (AVI 46630 kb)

References

  1. 1.
    L.C. Hibbeler and B. G. Thomas: Iron Steel Technol., 2013, vol. 10(10), pp. 121-136.Google Scholar
  2. 2.
    T. Teshima, M. Osame, K. Okimoto and Y. Nimura: Proc. of 71th Steelmaking Conf., The Iron and Steel Society, London, UK, 1988, pp. 111–118.Google Scholar
  3. 3.
    M. Iguchi, J. Yoshida, T. Shimizu, and Y. Mizuno: ISIJ Int., 2000, vol. 40, pp. 685-691.CrossRefGoogle Scholar
  4. 4.
    R. Hagemann, R. Schwarze, H. P. Heller, and P. R. Scheller: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 80-90.CrossRefGoogle Scholar
  5. 5.
    H. Shin, S. Kim, B. G. Thomas, G. Lee, J. Park, and J. Sengupta: ISIJ Int., 2006, vol. 46, pp. 1635-1644.CrossRefGoogle Scholar
  6. 6.
    J. Sengupta, B. G. Thomas, H. Shin, G. Lee, and S. Kim: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1597-1611.CrossRefGoogle Scholar
  7. 7.
    Z. Liu, B. Li, and M. Jiang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 675-697.CrossRefGoogle Scholar
  8. 8.
    Z. Liu, F. Qi, B. Li, and M. Jiang: J. Iron Steel Res. Int., 2014, vol. 21, pp. 1081-1089.CrossRefGoogle Scholar
  9. 9.
    Z. Liu, Z. Sun, and B. Li: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1248-1267.CrossRefGoogle Scholar
  10. 10.
    S-M. Cho, S-H. Kim, R. Chaudhary, B. G. Thomas, H-J. Shin, W-Y. Choi, S-K. Kim: Iron Steel Technol., 2012, vol.9, pp. 85-95.Google Scholar
  11. 11.
    R. Chaudhary, G-G. Lee, B. G. Thomas, S-M. Cho, S-H. Kim, and O-D. Kwon: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 300-315.CrossRefGoogle Scholar
  12. 12.
    C. Ojeda, B. G. Thomas, J. Barco, and J. L. Arana: Proc. of AISTech 2007, Assoc. Iron Steel Technology, Warrendale, PA, USA, 2007, vol. 1, pp. 269–84.Google Scholar
  13. 13.
    J. Sengupta, C. Ojeda, and B. G. Thomas: Int. J. Cast Met. Res., 2009, vol. 22, pp. 8-14.CrossRefGoogle Scholar
  14. 14.
    S-M. Cho, B. G. Thomas, and S-H. Kim: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3080-3098.CrossRefGoogle Scholar
  15. 15.
    S. Kunstreich, P. H. Dauby, S.-K. Baek, and S.-M. Lee: Proc. of 5th European Continuous Casting Conf., Nice, France, 2005, pp. 37–44.Google Scholar
  16. 16.
    P. H. Dauby: Rev. Metall., 2012, vol. 109, pp. 113-136.CrossRefGoogle Scholar
  17. 17.
    K. Jin, S. P. Vanka, and B. G. Thomas: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 162-178.CrossRefGoogle Scholar
  18. 18.
    H. Bai and B. G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 269-284.CrossRefGoogle Scholar
  19. 19.
    Z. Liu, B. Li, M. Jiang, and F. Tsukihashi: ISIJ Int., 2013, vol. 53, pp. 484-492.CrossRefGoogle Scholar
  20. 20.
    Z. Liu, F. Qi, B. Li, and S. C. P. Cheng: Int. J. Multiphase. Flow, 2016, vol. 79, pp. 190-201.CrossRefGoogle Scholar
  21. 21.
    K. Cukierski and B. G. Thomas: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 94-107.CrossRefGoogle Scholar
  22. 22.
    Y. Wang, A. Dong, and L. Zhang: Steel Res. Int., 2011, vol. 82, pp. 428-439.CrossRefGoogle Scholar
  23. 23.
    R. Singh, B. G. Thomas, and S. P. Vanka: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1098-1115.CrossRefGoogle Scholar
  24. 24.
    B. G. Thomas, L. J. Mika, and F. M. Najjar: Metall. Mater. Trans B, 1990, vol. 21B, pp. 387-400.CrossRefGoogle Scholar
  25. 25.
    F. M. Najjar, B. G. Thomas, and D. E. Hershey: Metall. Mater. Trans B, 1995, vol. 26B, pp. 749-765.CrossRefGoogle Scholar
  26. 26.
    S-M. Cho, B. G. Thomas, H-J. Lee, and S-H. Kim: Iron Steel Technol., 2017, vol. 14, pp. 76-84.Google Scholar
  27. 27.
    I. Calderon-Ramos, R. D. Morales, and M. Salazar-Campoy: Steel Res. Int., 2015, vol. 86, pp. 1610-1621.CrossRefGoogle Scholar
  28. 28.
    M. M. Salazar-Campoy, R. D. Morales, A. Nájera-Bastida, I. Calderón-Ramos, V. Cedillo-Hernández, and J. C. Delgado-Pureco: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 812-830.CrossRefGoogle Scholar
  29. 29.
    R. Chaudhary, G-G. Lee, B. G. Thomas, and S-H. Kim: Metall. Mater. Trans B, 2008, vol. 39B, pp. 870-884.CrossRefGoogle Scholar
  30. 30.
    C. A. Real-Ramirez, R. Miranda-Tello, L. Hoyos-Reyes, M. Reyes, and J. I. Gonzalez-Trejo: Indian J. Eng. Mater. Sci., 2012, vol. 19, pp. 179-188.Google Scholar
  31. 31.
    Q. Yuan: Ph. D. Thesis, University of Illinois at Urbana-Champaign, 2004.Google Scholar
  32. 32.
    Q. Yuan, B. G. Thomas, and S. P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 685-702.CrossRefGoogle Scholar
  33. 33.
    R. Liu: Ph. D. Thesis, University of Illinois at Urbana-Champaign, 2015.Google Scholar
  34. 34.
    ANSYS FLUENT 14.5-Theory Guide, ANSYS. Inc., Canonsburg, PA, USA, 2012.Google Scholar
  35. 35.
    F Nicoud, F Ducros (1999) Flow Turb. Comb. 63:183-200.CrossRefGoogle Scholar
  36. 36.
    A. W. Cramb and I. Jimbo: Iron Steelmaking., 1989, vol. 16, pp. 43-55.Google Scholar
  37. 37.
    J. Lee and K. Morita: ISIJ Int., 2002, vol. 42, pp. 588-594.CrossRefGoogle Scholar
  38. 38.
    B. J. Keene: Int. Mater. Rev., 1993, vol. 38, pp. 157-192.CrossRefGoogle Scholar
  39. 39.
    A Kasama, A McLean, WA Miller, Z Morita, MJ Ward (1983) Can. Metall. Q. 22:9-17.CrossRefGoogle Scholar
  40. 40.
    KC Mill, YC Su (2006) Int. Mater. Rev. 51:329-351.CrossRefGoogle Scholar
  41. 41.
    H. Shin: Ph.D. Thesis, POSTECH, 2006.Google Scholar
  42. 42.
    B. Zhao, S. P. Vanka, and B. G. Thomas: Int. J. Heat Fluid Flow, 2005, vol. 26, pp. 105-118.CrossRefGoogle Scholar
  43. 43.
    R. M. McDavid and B. G. Thomas: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 672-685.CrossRefGoogle Scholar
  44. 44.
    B. Xie, J. Wu, and Y. Gan: Proc. of Steelmaking Conference, ISS-AIME, Warrendale, PA, USA, 1991, pp. 647–651.Google Scholar
  45. 45.
    R. Liu, J. Sengupta, D. Crosbie, S. Chung, M. Trinh, and B. G. Thomas: Proc. of TMS 2011, TMS, Warrendale, PA, USA, 2011, pp. 51–58.Google Scholar
  46. 46.
    H. Bai and B. G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253-267.CrossRefGoogle Scholar
  47. 47.
    Q. Yuan, S. Sivaramakrishnan, S. P. Vanka, and B. G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 967–982.CrossRefGoogle Scholar
  48. 48.
    J. M. Harman and A. W. Cramb: Proc. 79th Steelmaking Conf., The Iron and Steel Society, Warrendale, PA, USA, 1996, pp. 773–84.Google Scholar
  49. 49.
    H. L. F. Von Helmholtz: Monatsb. K. Preuss. Akad. Wiss. Berlin, 1868, vol. 23, pp. 215-228.Google Scholar
  50. 50.
    W. Thomson. (Lord Kelvin): Phil. Mag., 1871, vol. 42, No. 281, pp. 362-377.CrossRefGoogle Scholar
  51. 51.
    T. Funada and D. D. Joseph: J. Fluid, 2001, vol. 445, pp. 263-283.Google Scholar
  52. 52.
    G-G. Lee, B. G. Thomas, S-H. Kim, H-J. Shin, S-K. Baek, C-H. Choi, D-S. Kim, and S-J. Yu: Acta Mater., 2007, vol. 55, pp. 6705-6712.CrossRefGoogle Scholar
  53. 53.
    L. Zhang and Brian G. Thomas: Proc. Of XXIV National Steelmaking Symposium, Morelia, Mich, Mexico, 2003, pp. 138–183.Google Scholar
  54. 54.
    H-J Shin, B . G. Thomas, G-G. Lee, J-M. Park, C-H. Lee, and S-H. Kim: Proc. Materials Science and Technology (MS&T), Assoc. Iron Steel Technology, Warrendale, PA, USA, 2004, vol. II, pp. 11–26.Google Scholar
  55. 55.
    ASM. Jonayat and B. G. Thomas: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1842–64.Google Scholar
  56. 56.
    B. E. Launder and D. B. Spalding: Lectures in Mathematical Models of Turbulence. Academic Press, London, England. 1972.Google Scholar
  57. 57.
    S-M. Cho, S-H. Kim, and B. G. Thomas: ISIJ Int., 2014, vol. 54, pp. 845-854.CrossRefGoogle Scholar
  58. 58.
    R. Chaudhary, C. Ji, B. G. Thomas, and S. P. Vanka: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 987-1007.CrossRefGoogle Scholar
  59. 59.
    S-M. Cho, S-H. Kim, and B. G. Thomas: ISIJ Int., 2014, vol. 54, pp. 855-864.CrossRefGoogle Scholar
  60. 60.
    R. Chaudhary, B. T. Rietow, and B. G. Thomas: Proc. Materials Science and Technology (MS&T), AIST/TMS, Pittsburgh, PA, 2009, pp. 1090–1101.Google Scholar
  61. 61.
    X. Jin, D. Chen, X. Xie, J. Shen, and M. Long: Steel Res. Int., 2013, vol. 84, pp. 31-39.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Seong-Mook Cho
    • 1
  • Brian G. Thomas
    • 1
    • 2
    Email author
  • Seon-Hyo Kim
    • 3
  1. 1.Department of Mechanical EngineeringColorado School of MinesGoldenUSA
  2. 2.University of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations