Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 204–209 | Cite as

Relationship of Coke Reactivity and Critical Coke Properties

  • Hao ZhangEmail author
Article
  • 113 Downloads

Abstract

The gasification reactions of five metallurgical cokes were studied using a thermogravimetric analyzer at 1273 K and 1673 K in CO2-CO-N2 gas mixture. The results show that these cokes showed different reactivities in the gasification reactions. Properties that potentially influence coke reactivity including ash content, catalytic index, surface area, and crystallite size were measured and correlated with reactivity. The results indicate that reactivity had a good correlation with ash content, catalytic index, and crystallite size. The effect of surface area on coke reactivity was marginal. Coke reactivity was positively affected by catalytic index but inversely affected by ash content. Although crystallite size inversely affected reactivity, the reaction rate at the initial stage was more predominantly influenced by the mineral matter. Therefore, the influence of surface area and crystallite size was overshadowed by the impact of ash content and catalytic index at the initial stage of reaction.

Notes

Acknowledgments

The research was supported by BlueScope, BHP and Australian Research Council (ARC Linkage Project LP130100701). The author would like to thank Dr. Harold Rogers for his advice in revising the manuscript.

References

  1. 1.
    J. Haapakangas, H. Suopajarvi, M. Iljana, A. Kemppainen, O. Mattila, E.P. Heikkinen, C. Samuelsson and T. Fabritius: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2357-70.CrossRefGoogle Scholar
  2. 2.
    J.A. Menendez, R. Alvarez and J.J. Pis: Ironmak. Steelmak., 1999, vol. 26, pp. 117-21.CrossRefGoogle Scholar
  3. 3.
    M. Grigore, R. Sakurovs, D. French and V. Sahajwalla: ISIJ Int., 2006, vol. 46, pp. 503-12.CrossRefGoogle Scholar
  4. 4.
    M. Grigore, R. Sakurovs, D. French and V. Sahajwalla: Energy Fuel, 2009, vol. 23, pp. 2075-85.CrossRefGoogle Scholar
  5. 5.
    D. Vogt, J.V. Weber, J.N. Rouzaud and M. Schneider: Fuel Process. Technol., 1988, vol. 20, pp. 155-62.CrossRefGoogle Scholar
  6. 6.
    B. Duval, J.M. Guet, J.R. Richard and J.N. Rouzaud: Fuel Process. Technol., 1988, vol. 20, pp. 163-75.CrossRefGoogle Scholar
  7. 7.
    J. Zhang: Ph.D. Thesis, University of New South Wales, Sydney, 2013, pp. 36-37.Google Scholar
  8. 8.
    S. Pusz, M. Krzesinska, L. Smedowski, J. Majewska, B. Pilawa and B. Kwiecinska: Int. J. Coal Geol., 2010, vol. 81, pp. 287-92.CrossRefGoogle Scholar
  9. 9.
    K. Li, R. Khanna, J. Zhang, Z. Liu, V. Sahajwalla, T. Yang and D. Kong: Fuel, 2014, vol. 133, pp. 194-215.CrossRefGoogle Scholar
  10. 10.
    X. Xing, Z. Guangqing, H. Rogers, P. Zulli and O. Ostrovski: Metall. Mater. Trans. B, 2014, vol. 45, pp. 106-12.CrossRefGoogle Scholar
  11. 11.
    S. Gupta, Z. Ye, R. Kanniala, O. Kerkkonen and V. Sahajwalla: Fuel, 2013, vol. 113, pp. 77-85.CrossRefGoogle Scholar
  12. 12.
    D. Vogt, J.M. Duchene, J.N. Rouzaud and D. Isler: Ironmak. Conference Proceeding Iron and Steel Society of AIME, Pennsylvania, 1991, pp. 225-31.Google Scholar
  13. 13.
    Y.H. Huang, H. Yamashita and A. Tomita: Fuel Process. Technol., 1991, vol. 29, pp. 75-84.CrossRefGoogle Scholar
  14. 14.
    M. Sakawa, Y. Sakurai and Y. Hara: Fuel, 1982, vol. 61, pp. 717-20.CrossRefGoogle Scholar
  15. 15.
    J.F. Gransden, J.G. Jorgensen, N. Manery, J.T. Price and N.J. Ramey: Int. J. Coal Geol., 1991, vol. 19, pp. 77-107.CrossRefGoogle Scholar
  16. 16.
    M.A. Diez, R. Alvarez and C. Barriocanal: Int. J. Coal Geol., 2002, vol. 50, pp. 389-412.CrossRefGoogle Scholar
  17. 17.
    H. Zhang: Chem. Eng. J., 2018, vol. 347, pp. 440-6.CrossRefGoogle Scholar
  18. 18.
    J.H. Zou, Z.J. Zhou, F.C. Wang, W. Zhang, Z.H. Dai, H.F. Liu and Z.H. Yu: Chem. Eng. Process., 2007, vol. 46, pp. 630-36.CrossRefGoogle Scholar
  19. 19.
    S. Nomura, H. Kitaguchi, K. Yamaguchi and M. Naito: ISIJ Int., 2007, vol. 47, pp. 245-53.CrossRefGoogle Scholar
  20. 20.
    S. Nomura: ISIJ Int., 2014, vol. 54, pp. 2533-40.CrossRefGoogle Scholar
  21. 21.
    J.A. Moulijn, M. Cerfontain and F. Kapteijn: Fuel, 1984, vol. 63, pp. 1043-7.CrossRefGoogle Scholar
  22. 22.
    M. Lundgren, R. Khanna, L.S. Okvist, V. Sahajwalla and B. Bjorkman: Metall. Mater. Trans. B, 2014, vol. 45, pp. 603-16.CrossRefGoogle Scholar
  23. 23.
    O. Kerkkonen: Coke Making Int., 1997, vol. 9, pp. 34-41.Google Scholar
  24. 24.
    S.S. Gornostayev and J.J. Harkki: Energy Fuel, 2006, vol. 20, pp. 2632-35.CrossRefGoogle Scholar
  25. 25.
    M. Grigore: Ph.D. Thesis, University of New South Wales, Sydney, 2007, pp. 144-45.Google Scholar
  26. 26.
    K. Miura, K. Hashimoto and P.L. Silveston: Fuel, 1989, vol. 68, pp. 1461-75.CrossRefGoogle Scholar
  27. 27.
    T. Kyotani, Z. Zhang, S. Hayashi and A. Tomita: Energy Fuel, 1988, vol. 2, pp. 136-41.CrossRefGoogle Scholar
  28. 28.
    H. Zhang: Energy Fuel, 2018, vol. 32, pp. 6641-49.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations