Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 181–191 | Cite as

Rate of MgO Pickup in Alumina Inclusions in Aluminum-Killed Steel

  • Deepoo Kumar
  • Petrus  Christiaan PistoriusEmail author
Article
  • 163 Downloads

Abstract

This work aims to clarify the rate and mechanism of MgO pickup by alumina inclusions and the effect of oxide impurities in MgO crucibles on this transformation. Two MgO crucibles from different batches from the same supplier were used in laboratory experiments with Al-killed steel. A kinetic model was developed, based on mass-transfer control in the liquid steel. Rate constants were fitted using inclusion analysis. The rate of magnesium transfer from the two types of crucibles was found to differ by a factor of 20; faster magnesium transfer was associated with formation of a slag layer on the inner surface of the crucible wall (rather than a solid spinel product layer). The kinetic model was also used to simulate industrial scale ladle refining (1) to illustrate the effects of total oxygen concentration and (2) to evaluate the contribution of steel-refractory reaction (in addition to steel-slag reaction) on the rate of MgO pickup in alumina inclusion. The rate of MgO pickup was higher with a lower inclusion concentration. For ladle desulfurization, the extent of MgO pickup in inclusions is directly linked to the extent of desulfurization; both reactions are controlled by the oxygen potential at the steel-slag interface.

Notes

ACKNOWLEDGMENTS

Support of this work by the industrial members of the Center for Iron and Steelmaking Research is gratefully acknowledged. We also acknowledge use of the Materials Characterization Facility, Carnegie Mellon University, supported by Grant No. MCF-677785.

REFERENCES

  1. 1.
    K. Schwerdtfeger: Arch. Eisenhüttenwes., 1983, vol. 54 (3), pp. 87–98.CrossRefGoogle Scholar
  2. 2.
    T. Zienert and O. Fabrichnaya: CALPHAD, 2013, vol. 40, pp. 1–9.CrossRefGoogle Scholar
  3. 3.
    K. Ahlborg: Steelmaking Conf. Proc., ISS-AIME, 2001, pp. 861–69.Google Scholar
  4. 4.
    Z. Deng, M. Zhu, and D. Sichen: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3158–67.CrossRefGoogle Scholar
  5. 5.
    C. Liu, F. Huang, J. Suo, and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 989–98.CrossRefGoogle Scholar
  6. 6.
    J. Tan and B.A. Webler: AISTech 2016 Proc., Association for Iron & Steel Technology, Warrendale, 2016, pp. 2485–96.Google Scholar
  7. 7.
    G. Okuyama, K. Yamaguchi, S. Takeuchi, and K. Sorimachi: ISIJ Int., 2000, vol. 40 (2), pp. 121–28.CrossRefGoogle Scholar
  8. 8.
    N. Verma, P.C. Pistorius, R.J. Fruehan, and M. Potter: Iron Steel Technol., 2010, vol. 7 (1), pp. 189–97.Google Scholar
  9. 9.
    S.P.T. Piva, D. Kumar, and P.C. Pistorius: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 37–45.CrossRefGoogle Scholar
  10. 10.
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E .Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. Van Ende: CALPHAD, 2016, vol. 54, pp. 35–53.CrossRefGoogle Scholar
  11. 11.
    A. Harada, G. Miyano, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2230–38.CrossRefGoogle Scholar
  12. 12.
    D. Roy, P.C. Pistorius, and R.J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1095–1104.CrossRefGoogle Scholar
  13. 13.
    D. Tang, M.E. Ferreira, and P.C. Pistorius: Microsc. Microanal., 2017, vol. 23, pp. 1082–90.CrossRefGoogle Scholar
  14. 14.
    C. Merlet: X-ray Optics and Microanalysis, 1992: Proc. 13th Int. Congr., Institute of Physics, Bristol, United Kingdom, 1993, pp. 123–26.Google Scholar
  15. 15.
    C. Merlet: Mikrochim. Acta, 1994, vols. 114–115, pp. 363–76.CrossRefGoogle Scholar
  16. 16.
    CRC Handbook of Chemistry and Physics, 99th ed., J.R. Rumble, ed., CRC Press, Boca Raton, FL, 2018.Google Scholar
  17. 17.
    D. Kumar and P.C. Pistorius: AISTech 2016 Proc., Association for Iron & Steel Technology, Warrendale, PA, 2016, pp. 1151–59Google Scholar
  18. 18.
    A. Harada, N. Maruoka, H. Shibata, M. Zeze, N. Asahara, F. Huang, and S. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2569–77.CrossRefGoogle Scholar
  19. 19.
    D. Kumar, K.C. Ahlborg, and P.C. Pistorius: AISTech 2017 Proc., Association for Iron & Steel Technology, Warrendale, PA, 2017, pp. 2693–2706Google Scholar
  20. 20.
    M. Hino, S. Wang, T. Nagsaka, and S. Ban-ya: ISIJ Int., 1994, vol. 34, pp. 491–97.CrossRefGoogle Scholar
  21. 21.
    J.R. Lloyd and W.R. Moran: J. Heat Transfer, 1974, vol. 96, pp. 443–47.CrossRefGoogle Scholar
  22. 22.
    B.E. Poling, J.M. Prausnitz, and J.P. O’Connell: Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York, NY, 2001.Google Scholar
  23. 23.
    D. Kumar: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 2018.Google Scholar
  24. 24.
    M.-A. Van Ende, M. Guo, E. Zinngrebe, B. Blanpain, and I.-H. Jung: ISIJ Int., 2013, vol. 53, pp. 1974–82.CrossRefGoogle Scholar
  25. 25.
    H. Mu, T. Zhang, R.J. Fruehan, and B.A. Webler: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1665–74.CrossRefGoogle Scholar
  26. 26.
    N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 830–40.CrossRefGoogle Scholar
  27. 27.
    C. Cicutti, C. Capurro, and C. Cerrutti: 9th Int. Conf. Exhib. on Clean Steel, Simulation and Model Calculations, Hungarian Mining and Metallurgical Society (OMBKE), Budapest, 2015.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Center for Iron and Steelmaking ResearchCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations