Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 10–15 | Cite as

Rise of Gas Bubbles Across the Interface Between Two Liquids

  • Albin Rozario
  • Nurni N. Viswanathan
  • Somnath BasuEmail author
Communication
  • 169 Downloads

Abstract

Water and different oils were used to represent liquid metal and slag, respectively, in a cold model simulation of gas bubbles rising through molten metal and slag layers. It was seen that the ascending gas bubbles appeared to attain a quasi-stationary state for a finite duration at the interface between the two liquid layers. The magnitude of this apparent residence time was dependent on draining of the liquid film around the bubble, which, in turn, influenced the entrainment of the heavier liquid into the lighter one.

Nomenclature

ρwater

Density of water

ρoil

Density of oil

ηoil

Dynamic viscosity of oil

νoil

Kinematic viscosity of oil

τ1

Apparent residence time of a bubble at the water-oil interface

τ2

Time for complete drainage of water film after the bubble starts to rise through the oil layer

Vf

Terminal velocity of a rising bubble in oil (after complete drainage of the water film)

Δ(ρ)

Difference in density between oil and water, ρwρo

References

  1. 1.
    A. Ghosh and A. Chatterjee: Ironmaking and Steelmaking—Theory and Practice, PHI Learning Pvt. Ltd., New Delhi, 2010.Google Scholar
  2. 2.
    The Making, Shaping and Treating of Steel, 11th ed., R.J. Fruehan, ed., The AISE Steel Foundation, Pittsburgh, PA, 1998.Google Scholar
  3. 3.
    C. Nexhip, S. Sun, and S. Jahanshahi: Int. Mater. Rev., 2004, vol. 49, pp. 286–98.CrossRefGoogle Scholar
  4. 4.
    A. Warczok and T.A. Utigard: Can. Metall. Q., 1994, vol. 33, pp. 205–15.CrossRefGoogle Scholar
  5. 5.
    A. Kapilashrami, M. Görnerup, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 109–17.CrossRefGoogle Scholar
  6. 6.
    M. Liukkonen, K. Penttilä, and P. Koukkari: A Compilation of Slag Foaming Phenomenon Research, VTT Technology, Espoo, 2012.Google Scholar
  7. 7.
    Y. Ogawa, D. Huin, H. Gaye, and N. Tokumitsu: ISIJ Int., 1993, vol. 33, pp. 224–32.CrossRefGoogle Scholar
  8. 8.
    J. Li and M. Barati: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 17–24.CrossRefGoogle Scholar
  9. 9.
    Y. Taniguchi and S. Seetharaman: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 587–97.CrossRefGoogle Scholar
  10. 10.
    A. Kapilashrami, A.K. Lahiri, M. Görnerup, and S. Seetharaman: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 145–48.CrossRefGoogle Scholar
  11. 11.
    G. Reiter and K. Schwerdtfeger: ISIJ Int., 1992, vol. 32, pp. 50–56.CrossRefGoogle Scholar
  12. 12.
    A.H. Rabenjafimanantsoa and R.W. Time: Ann. Trans. Nordic Rheology Soc., 2013, vol. 21, pp. 23–28.Google Scholar
  13. 13.
    Y. Kimitoshi and K. Schwerdtfeger: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 461–68.Google Scholar
  14. 14.
    D. Mazumdar and J.W. Evans: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 400–04.CrossRefGoogle Scholar
  15. 15.
    K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 763–72.CrossRefGoogle Scholar
  16. 16.
    K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 191–98.CrossRefGoogle Scholar
  17. 17.
    L. Wu: Ph.D. Thesis, Royal Institute of Technology (KTH), Stockholm, 2011.Google Scholar
  18. 18.
    L. Wu, P. Valentin, and D. Sichen: Steel Res. Int., 2011, vol. 81, pp. 508–15.CrossRefGoogle Scholar
  19. 19.
    A.H. Castillejos and J.K. Brimacombe: Metall. Trans. B, 1987, vol. 18B, pp. 659–71.CrossRefGoogle Scholar
  20. 20.
    M. Iguchi, K. Nozawa, and Z. Morita: ISIJ Int., 1991, vol. 31, pp. 952–59.CrossRefGoogle Scholar
  21. 21.
    Y. Taitel and A.E. Dukler: AIChE J., 1976, vol. 22, pp. 47–55.CrossRefGoogle Scholar
  22. 22.
    W.B. Hayes III, B.W. Hardy, and C.D. Holland: AIChE J., 1959, vol. 5, pp. 319–24.CrossRefGoogle Scholar
  23. 23.
    S.L. Sullivan, Jr., B.W. Hardy, and C.D. Holland: AIChE J., 1964, vol. 10, pp. 848–54.CrossRefGoogle Scholar
  24. 24.
    D. Poggi, R. Minto, and W.G. Davenport: J. Met., 1969, vol. 21, pp. 40–45.Google Scholar
  25. 25.
    S. Kobayashi: ISIJ Int., 1993, vol. 33, pp. 577–82.CrossRefGoogle Scholar
  26. 26.
    K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 367–75.CrossRefGoogle Scholar
  27. 27.
    K. Krishnapisharody and G.A. Irons: Proceedings of the 4th International Congress on the Science and Technology of Steelmaking (ICS 2008), Gifu, Japan, 2008, pp. 367–70.Google Scholar
  28. 28.
    K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1486–98.CrossRefGoogle Scholar
  29. 29.
    A. Rozario: Master of Technology Thesis, Indian Institute of Technology Bombay, Mumbai, 2014.Google Scholar
  30. 30.
    A. Rozario, N.N. Viswanathan, and S. Basu: Proceedings of the 6th International Congress on the Science and Technology of Steelmaking (ICS 2015), Beijing, China, 2015, pp. 328–31.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Albin Rozario
    • 1
  • Nurni N. Viswanathan
    • 2
  • Somnath Basu
    • 2
    Email author
  1. 1.Praxair India Pvt. Ltd.PuneIndia
  2. 2.Metallurgical Engineering & Materials Science DepartmentIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations