Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 173–180 | Cite as

Mixing Behaviors in the Horizontal Bath Smelting Furnaces

  • Xu Jiang
  • Zhixiang Cui
  • Mao ChenEmail author
  • Baojun Zhao


In the copper smelting process, sulfides are oxidized by the injected oxygen in the liquid bath. The reaction rate is predominantly determined by the stirring conditions of the bath. Single lance mixing experiments were carried out in a horizontal cylindrical vessel with different gas blown angles to simulate the smelting furnaces gas blown from side and bottom. The mixing behaviors were studied by quantifying the mixing time of the bath under different conditions. The results show that the increase of gas flow rate decreases the mixing time rapidly before it reaches a plateau. In the side blown furnace, mixing time was also shortened significantly by increasing bath height up to certain values, followed by minor promotions of mixing time if further increasing the bath heights. In comparison to the side blown process with the same gas flow conditions, the bottom blown process took more time for the bath to reach homogeneity under the same operating conditions.

List of Symbols

\( \rho_{l} \)

Liquid density (kg/m3)

\( \rho_{g} \)

Gas density (kg/m3)

\( u \)

Gas velocity (m/s)


Gravitational constant (m/s2)


Liquid depth (m)


Vessel radius (m)


Volumetric flow rate of gas (m3/s)

\( Fr^{\prime} \)

Modified Froude Number


Liquid recirculation velocity (m/s)

\( U_{p} \)

Rising plume velocity (m/s)

\( P_{0} \)

Atmospheric pressure (Pa)


Mols of gas in one bubble (mol)


GAS constant (J/mol/K)


Temperature (K)


Vertical distance gas traveled (m)


Bath depth (cm)


Parameter for circulatory loop length



The authors would like to thank National Copper Corporation of Chile (Codelco), Dongying Fangyuan Nonferrous Metals (Fangyuan), and Australia Research Council for the financial support through the ARC Linkage program.


  1. 1.
    M.E. Schlesinger, M.J. King, K.C. Sole and W.G. Davenport: Extractive metallurgy of copper, 4th ed., Elsevier Science Ltd. Kidlington, Oxford, 2002, pp. 112.Google Scholar
  2. 2.
    M. Perez-Tello, V.R. Parra-Sanchez, V.M. Sanchez-Corrales, A. Gomez-Alvarez, F. Brown-Bojorquez, R. Parra-Figueroa, E. R. Balladares-Varela and E.A. Araneda-Hernandez: Metall. Trans. B, 2018, vol. 49, pp.627-43.CrossRefGoogle Scholar
  3. 3.
    B. Zhao, Z. Cui, and Z. Wang: 4th Int. Symp. High-Temp. Metall. Process., 2013, pp. 1–10.Google Scholar
  4. 4.
    D. Mazumdar and R.I. Guthrie: Metall. Trans. A, 1986, vol. 17, pp.725-33.CrossRefGoogle Scholar
  5. 5.
    A. Amaro-Villeda, M. Ramirez-Argaez. and A.N. Conejo: ISIJ Int, 2014, 54, 1-8.CrossRefGoogle Scholar
  6. 6.
    C.J. Su, J.M. Chou. and S.H. Liu: Mater. Trans, 2010, vol. 51, pp. 1602-8.CrossRefGoogle Scholar
  7. 7.
    G. Murthy, S. Mehrotra and A. Ghosh: Metall. Trans. B, 1988, vol. 19, pp. 839-50.CrossRefGoogle Scholar
  8. 8.
    O. Haida and J. Brimacombe: SCANINJECT III Proc, 1983, p. 5.Google Scholar
  9. 9.
    S. Patil, D. Satish, M. Peranandhanathan and D. Mazumdar: ISIJ Int, 2010, vol. 50, pp. 1117-24.CrossRefGoogle Scholar
  10. 10.
    K. Nakanishi, T. Fujii and J. Szekely: Ironmak. Steelmak, 1975,vol. 3, pp. 190-5.Google Scholar
  11. 11.
    D. Mazumdar and R.I. Guthrie: ISIJ int, 1995, vol. 35, pp. 1-20.CrossRefGoogle Scholar
  12. 12.
    S. Asai, T. Okamoto, J. He and I. Muchi: Trans Iron Steel Inst. Jpn, 1983, vol. 23, pp. 43-50.CrossRefGoogle Scholar
  13. 13.
    L. Khajaviand and M. Barati: Metall. Trans. B, 2010, vol. 41, pp. 86-93.Google Scholar
  14. 14.
    J. Mandal, S. Patil, M. Madan and D. Mazumdar: Metall. Trans. B, 2005, vol. 36, pp. 479-87.CrossRefGoogle Scholar
  15. 15.
    G. Murthy, A. Ghoshand and S. Mehrotra: Metall. Trans. B, 1989, vol. 20, pp. 53-9.CrossRefGoogle Scholar
  16. 16.
    O. Haida and J. Brimacombe, Trans Iron Steel Inst. Jpn, 1985, vol. 25, pp. 14-20.CrossRefGoogle Scholar
  17. 17.
    L. Shui, Z. Cui, X. Ma, M. Akbar Rhamdhani, A. Nguyen, B. Zhao: Metall. Trans. B, 2015, 46, 1218-25.CrossRefGoogle Scholar
  18. 18.
    M. Zhu, T. Inomoto, I. Sawada, and T. Hsiao: ISIJ Int, 1995, vol. 35, pp. 472-9.CrossRefGoogle Scholar
  19. 19.
    M. Iguchi, R. Tsujino, K. Nakamura and M. Sano: Metall. Trans. B, 1999, vol. 30, pp. 631-7.CrossRefGoogle Scholar
  20. 20.
    K. Krishnapisharody and G. Irons: Metall. Trans. B, 2006, vol. 37, pp. 763-72.CrossRefGoogle Scholar
  21. 21.
    M. Madan, D. Satish and D. Mazumdar: ISIJ international, 2005, vol. 45, pp. 677-85.CrossRefGoogle Scholar
  22. 22.
    S. Joo and R. Guthrie: Metall. Trans. B, 1992, vol. 23, pp. 765-78.CrossRefGoogle Scholar
  23. 23.
    Y. Sahai and R. Guthrie: Metall. Trans. B, 1982, vol. 13, pp. 193-202.CrossRefGoogle Scholar
  24. 24.
    T. Hsiao, T. Leher and B. Kjellberg: Scand. J. Metallurgy, 1980, vol. 9, pp.105-10Google Scholar
  25. 25.
    Y. Sahai: Metall. Trans. B, 1988, vol. 19(4), pp. 603-12.CrossRefGoogle Scholar
  26. 26.
    M. Castello-Branco and K. Schwerdtfeger: Metall. Trans. B, 1994, vol. 25, pp. 359-71.CrossRefGoogle Scholar
  27. 27.
    F. Oeters, H. Dromer and J. Kepura, SCANINJECT III, Proc. of int. Conf. on Injection Metallurgy, Jernkontoret, Sweden, 1983.Google Scholar
  28. 28.
    R.I.L. Guthrie: Iron and Steelmaker, 1982, vol. 9, pp. 41-5.Google Scholar
  29. 29.
    Y. Sahai and R.I.L. Guthrie: Metall. Trans. B, 1982, vol. 13, pp. 203-11.CrossRefGoogle Scholar
  30. 30.
    W.E. Forsythe: Smithsonian Physical Tables, 9th rev. ed., Knovel, New York City, NY, 2003, p. 319.Google Scholar
  31. 31.
    J.P.T. Kapusta: JOM, 2017, vol. 69, pp. 970-79CrossRefGoogle Scholar
  32. 32.
    C. Cai, Y. Liang and Z. Qian: Chin. J. Process Eng, 1985, vol. 4, pp. 113–21.Google Scholar
  33. 33.
    G. Oryall and J. Brimacombe: Metall. Trans. B, 1976, vol. 7, pp. 391-403.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.Dongying Fangyuan Nonferrous MetalsDongyingP.R. China

Personalised recommendations