Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 438–458 | Cite as

Control of Slag Carryover from the BOF Vessel During Tapping: BOF Cold Model Studies

  • Ashok KamarajEmail author
  • G. K. Mandal
  • G. G. Roy


In a modern integrated steel plant, slag-free tapping during transfer of liquid steel from the BOF vessel to the ladle is prerequisite to produce ultraclean steel for high-end critical applications. The present investigation aims to examine the drain vortices during the liquid steel tapping process. The tapping experiments were conducted in a geometrical down-scaled Perspex BOF cold model, which was more akin to the industrial practice than the other geometries previously reported in the literature. The study highlights the influence of the complex BOF shape on drain vortices during the tapping process. It is observed that vorticity behavior during liquid steel tapping from the BOF vessel is different from the earlier observations reported for the teeming process. The parametric study of the tapping process and its analysis confirmed that the threshold height for drain vortices is strongly influenced by the nozzle diameter (ND) and marginally influenced by the residual inertia of the liquid. The carryover ratio (COR) for the water-oil experiments is in agreement with the values obtained in industrial practice. Yield loss tends to increase with the increase in ND. The onset of drain vortices in the presence of overlying phase (oil/slag) during the BOF tapping process could be principally controlled by the vessel design. The physical properties of the overlying phase had negligible influence on the drain vortices. The critical times for vortex and drain sink formation were predicted based on dimensional analysis coupled with the mathematical formulation for the tapping process. A strategy to control the slag carryover during the tapping process in industry is also discussed and postulated based on the understanding developed from water modeling experiments.



Initial liquid height (m)


Nozzle/tap hole diameter (m)


Initial water filling flow rate (lpm/kg s−1)


Dwell/waiting time (s)


Carryover ratio (—)


Critical LH for vortex formation (m)


Critical LH for drain sink formation (m)


Weight of water/liquid steel tapped during tapping (kg)


Weight of oil/slag carried over during tapping (kg)


Distance from rear end of LD vessel to the tap hole (m)


Initial water filling velocity (m s−1)


Instantaneous LH in LD vessel during tapping (m)


Acceleration due to gravity (m2 s−1)


Density (kg m−3)


Dynamic viscosity (kg m−1 s−1)


Surface tension (N m−1)


Kinematic viscosity (m2 s−1)


Interfacial tension of liquid steel and slag (N m−1)


Discharge coefficient (—)


Cross-sectional area of tap hole/nozzle (m2)


Froude number (—)


Reynolds number (—)


  1. 1.
    L.M. Trefethen, R.W. Bilger, P.T. Fink, R.E. Luxton, and R.I. Tanner: Nature, 1965, vol. 207, pp. 1084–85.CrossRefGoogle Scholar
  2. 2.
    B.T. Lubin and G.S. Sprin: J. Fluid Mech., 1967, vol. 29, Part 2, pp. 385–90.CrossRefGoogle Scholar
  3. 3.
    R. Sankaranarayanan and R.I.L. Guthrie: Ironmak. Steelmak., 2002, vol. 29, pp. 147–53.CrossRefGoogle Scholar
  4. 4.
    G.S. Oiaz, A.R. Banderas, J. de J. Barreto, and R.O. Morales: Steel Res. Int., 2007, vol. 78, pp. 248–53.Google Scholar
  5. 5.
    A. Muralikrishna, S. Bagui, and D. Mazumdar: Trans. Ind. Inst. Met., 2013, vol. 66, pp. 281–95.CrossRefGoogle Scholar
  6. 6.
    D. Mazumdar, O.P. Singh, J. Dutta, S. Ghosh, D. Satish, and S. Chakraborty: Trans. Ind. Inst. Met., 2011, vol. 64, pp. 593–605.CrossRefGoogle Scholar
  7. 7.
    K. Michalek, K. Gryc, L. Socha, M. Tkadlečková, M. Saternus, J. Pieprzyca, T. Merder, and L. Pindor: Arch. Metall. Mater., 2016, vol. 61, pp. 257–60.CrossRefGoogle Scholar
  8. 8.
    N. Kojola, S. Takagi, S. Yokoya, and P. Jönsson: ISIJ Int., 2009, vol. 49, pp. 1–9.CrossRefGoogle Scholar
  9. 9.
    S.H. Majidi and C. Beckermann: Paper presented at Proc. 70th SFSA Technical and Operating Conference, Steel Founders’ Society of America, Chicago, IL, 2016, paper no. 4.8.Google Scholar
  10. 10.
    P.K. Singh: Master’s Thesis, University of Kentucky, Lexington, KY, 2004.Google Scholar
  11. 11.
    G. Caruso, L. Cristofano, M. Nobili, and D. Vitale Di Maio: J. Phys. Conf. Ser., 2014, vol. 501, pp. 1–10.CrossRefGoogle Scholar
  12. 12.
    H.X. Li, Q. Wang, J.W. Jiang, H. Lei, Z.C. Guo, and J.C. He: ISIJ Int., 2016, vol. 56, pp. 94–102.CrossRefGoogle Scholar
  13. 13.
    P. Hammerschmid, K.H. Tacke, H. Popper, L. Weber, M. Dubke, and K. Schwerdtfeger: Ironmak. Steelmak., 1984, vol. 11, pp. 332–39.Google Scholar
  14. 14.
    S.C. Koria and P. Umakanth: Steel Res., 1994, vol. 65, pp. 8–14.CrossRefGoogle Scholar
  15. 15.
    S.C. Koria and P. Umakanth: Trans. Ind. Inst. Met., 1994, vol. 47, pp. 121–30.Google Scholar
  16. 16.
    O. Davila, R.D. Morales, and L.G. Demedices: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 71–87.CrossRefGoogle Scholar
  17. 17.
    G.M. Mazzaferro, M. Piva, S.P. Ferro, P. Bissio, M. Iglesias, A. Calvo, and M.B. Goldschmit: Ironmak. Steelmak., 2004, vol. 31, pp. 1–6.CrossRefGoogle Scholar
  18. 18.
    K. Kuwana, M.I. Hassan, P.K. Singh, K. Saito, and J. Nakagawa: Mater. Manuf. Process., 2008, vol. 23, pp. 407–12.CrossRefGoogle Scholar
  19. 19.
    R.D. Morales, O.D. Maldonado, I. Calderón, and K.M. Higa: ISIJ Int., 2013, vol. 53, pp. 782–91.CrossRefGoogle Scholar
  20. 20.
    M.B. Goldschmit, S.P. Ferro, and A.H.C. Owen: Progr. Compu. Fluid Dyn. Int. J., 2004, vol. 4, pp. 12–19.CrossRefGoogle Scholar
  21. 21.
    G.J. Hassall: Report No. 7210-CB/805, British Steel Corporation, European Commission, London, 1948.Google Scholar
  22. 22.
    H. Doostmohammadi, M. Andersson, K. Steneholm, and P. Jonsson: Effect of EAF Slag Carryover on Slag-Metal Equilibrium Calculations for Ladle Degassing Process TMS Annual Meeting and Exhibition. TMS, San Francisco, 2009.Google Scholar
  23. 23.
    C.J.Z. Yiyu and Z. Lixin: Progress of Production Technology of Clean Steel in Bao Steel. Accessed 28 July 2018.
  24. 24.
    E.K. Mattias : Know the Unknown: How Carry-Over Slag Varies and How It Impacts on the Processing and Product Quality in Metals Production, Metsol AB, Stockholm, 2013.Google Scholar
  25. 25.
    R.J. Fruehan and S. Misra: “Hydrogen and Nitrogen Control in Ladle and Casting Operations,” AISI/DOE Technology Roadmap Program Report, Carnegie Mellon University, Pittsburgh, PA, 2005.Google Scholar
  26. 26.
    Z. Adolf, I. Husar, and P. Suchánek: Mater. Technol., 2007, vol. 41, pp. 185–88.Google Scholar
  27. 27.
    K. Steneholm, N.A.I. Andersson, A. Tilliander, and P.G. Jönsson: Ironmak. Steelmak., 2016, vol, 45, pp. 114–24.CrossRefGoogle Scholar
  28. 28.
    J. Alexis, M. Andersson, J. Björkvall, D. Sichen, and A. Sandberg: Report No. JK 23045, Strategic Steel Research Programme for Sweden 2007–2012, jointly funded by VINNOVA and Jernkontoret, Sweden, 2011.Google Scholar
  29. 29.
    J.L. Liow, M. Juusela, and N.B. Gray: “Viscosity Effects in the Discharge of a Two-Layer Liquid through an Orifice,” 14th Austr. Fluid Mechanics Conf., Adelaide, Australia, Dec. 10–14, 2001, pp. 853–56.Google Scholar
  30. 30.
    J.W. Suh, J. Park, H. Kim, and Z.H. Lee: ISIJ Int., 2001, vol. 41 (7), pp. 689–95.CrossRefGoogle Scholar
  31. 31.
    E.K. Mattias: Advanced Vision Systems to Control Ladle Slag Carry-Over, METEC & 2nd ESTAD, Düsseldorf, June 15–19, 2015.Google Scholar
  32. 32.
    E.A. Fuchs, D.A. Goldstein, and A. Sharan: Patent No. EP 0922774 A1, Bethlehem Steel Corporation, Bethlehem, PA, 1998.Google Scholar
  33. 33.
    J.A. Stofanak, A. Sharan, D.A. Goldstein, and E.A. Stelts: Patent No. US 6197086 B1, Bethlehem Steel Corporation, Bethlehem, PA, 2001.Google Scholar
  34. 34.
    W. Purchase: Patent No. US 6602069 B2, Goricon Metallurgical Services Limited, 2003.Google Scholar
  35. 35.
    F. Rubenzuckera, R. Krumpa, M. Borza, K. Hölzla, and M. Traugott: Improvements for LD-Converter & Electric Arc Furnaces, METAL (2005). Accessed 28 July 2018.
  36. 36.
    S.J. Lee, S.J. Kim, and H.G. Lee: Met. Mater. Int., 2016, vol. 22 (1), pp. 136–42.CrossRefGoogle Scholar
  37. 37.
    F.M. Sakri, M.S.M. Ali, S. Ahmad, Z.S. Salim, and S. Muhamad: IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 226, pp. 1–11.Google Scholar
  38. 38.
    D. Agarwal, P. Basu, T.J. Tharakan, and A. Salih: Aerosp. Sci. Technol., 2017, vol. 32, pp. 60–65.CrossRefGoogle Scholar
  39. 39.
    C.H. Sohn, M.G. Ju, and B.H.L. Gowda: J. Mech. Sci. Technol., 2010, vol. 24, pp. 951–60.CrossRefGoogle Scholar
  40. 40.
    J. Mohammadi, H. Karimi, M. Islami, and M.H. Hamedi: Adv. Mech. Eng., 2012, pp. 1–5.Google Scholar
  41. 41.
    A. Tinaikar, S. Advaith, and S. Basu: J. Fluid Mech., 2018, vol. 836, pp. 873–909.Google Scholar
  42. 42.
    Douglas Montgomery: Design of Analysis and Experiments, 8th ed., Wiley Publisher, North California, 2013, pp. 449–77.Google Scholar
  43. 43.
    N. Siddiqui and A. Ahmad: Int. J. Sci. Environ. Technol., 2013, vol. 2, pp. 1318–26.Google Scholar
  44. 44.
    Database Oil Properties, Environment Technology Center, Canada., 2001. Accessed 28 July 2018.
  45. 45.
    A. Jakobsson, M. Nasu, J. Mangwiru, K.C. Mills, and S. Seetharaman: Phil. Trans. R. Soc. London A, 1998, vol. 356, pp. 995–1001.CrossRefGoogle Scholar
  46. 46.
    H. Sun, K. Nakashima, and K. Mori: ISIJ Int., 2006, vol. 46, pp. 407–12.CrossRefGoogle Scholar
  47. 47.
    E.J. Jung, W. Kim, I. Sohn, and D.J. Min: J. Mater. Sci., 2010, vol. 45, pp. 2023–29.CrossRefGoogle Scholar
  48. 48.
    K. Morohoshi, M. Uchikoshi, M. Isshiki, and H. Fukuyama: ISIJ Int., 2013, vol. 53, pp. 1315–19.CrossRefGoogle Scholar
  49. 49.
    K. Ogino, S. Hara, Takashi, and S. Kimoto: ISIJ Int., 1984, vol. 24, pp. 522–31.Google Scholar
  50. 50.
    R.F. Brooks and P.N. Quested: J Mater. Sci., vol. 40, pp. 2233–38.Google Scholar
  51. 51.
    K. Ashok, G.G. Roy, and G.K. Mandal: Trans. Ind. Inst. Met., 2017, vol 17, pp. 2465–76.Google Scholar
  52. 52.
    K.C. Mills: “The Estimation of Slag Properties,” Southern African Pyrometallurgy, unpublished research, 2011.Google Scholar
  53. 53.
    M. Peranandhanthan and D. Mazumdar: ISIJ Int., 2010, vol. 50, pp. 162–231.CrossRefGoogle Scholar
  54. 54.
    K. Ashok, G.G. Roy, and G.K. Mandal: Modeling and Simulation Studies on BOF Tapping Process, 3rd Internation Conference of Ironmaking and Steelmaking, Kanpur, 2017, pp. 403–06.Google Scholar
  55. 55.
    C. Schaschke: Fluid Mechanics, Institution of Chemical Engineers, Rugby, UK, 2000, p. 141.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Academy of Scientific and Innovative Research (AcSIR)CSIR–National Metallurgical Laboratory (CSIR-NML)JamshedpurIndia
  2. 2.Indian Institute of TechnologyKharagpurIndia

Personalised recommendations