Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 337–356 | Cite as

Characterization of Nonmetallic Inclusions in 18CrNiMo7-6

  • Johannes GleinigEmail author
  • Anja Weidner
  • Jens Fruhstorfer
  • Christos G. Aneziris
  • Olena Volkova
  • Horst Biermann


The detrimental effect of nonmetallic inclusions (NMIs) in steels on, e.g., fatigue lifetime is well known. In order to increase the durability and safety of materials and components, inclusion control and a deep understanding of inclusion formation are essential. The present study examines the formation of inclusions as well as their content, type, morphology, and size distribution for different batches of the steel alloy 18CrNiMo7-6 (AISI 4317), which was processed with various refractory crucible materials. To this end, extensive metallographic investigations were carried out including fracture surface analyses, metallographic sections, and the chemical extraction of inclusions. Scanning electron microscopy supported by energy-dispersive X-ray spectroscopy was used alongside electron backscatter diffraction for the qualitative and quantitative analysis of the NMIs. Oxide contents were found to have a significant effect on sulfide precipitation behavior, and had a strong impact on the resulting sizes and numbers of inclusions. The formation and growth of sulfides and oxide-sulfides featuring different morphologies is discussed on the basis of these experimental results.



This work was conducted within the collaborative research center 920 “Multi-Functional Filters for Metal Melt Filtration” at the Institute of Materials Engineering, Institute of Iron and Steel Technology, and Institute of Ceramic, Glass and Construction Materials at TU Bergakademie Freiberg. The authors are grateful to the German Research Foundation (DFG) for its funding of the C04project. Furthermore, our thanks go to Dr.-Ing. Steffen Dudczig, Ricardo Fricke, and David Thiele who remelted the steel cylinders, and to Birgit Witschel who prepared the metallographic specimens. Our gratitude is also owed to Brigitte Bleiber for sputter-coating mounted samples, Dr.-Ing. Thilo Kreschel for chemical analysis, Dr.-Ing. Hans-Peter Heller for fruitful discussions, and Dr.-Ing. Gert Schmidt for ASPEX training.


  1. 1.
    1. U. T. Riedel, J. E. Morgan, C. A. McMahon, F. J. Guild, and W. Bleck: P. I. Mech. Eng. B-J. Eng., 1999, vol. 213, pp. 427–30.Google Scholar
  2. 2.
    D. You, S.K. Michelic, P. Presoly, J. Liu, and C. Bernhard: Metals, 2017, vol. 7, art. no. 460.
  3. 3.
    3. Y. Murakami and M. Endo: Int. J. Fatigue, 1994, vol. 16, pp. 163–82.CrossRefGoogle Scholar
  4. 4.
    4. Y. Murakami: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, Oxford, 2002.Google Scholar
  5. 5.
    5. K. Tanaka and T. Mura: Metall. Trans. A, 1982, vol. 13, pp. 117–23.CrossRefGoogle Scholar
  6. 6.
    6. P. Juvonen: Effects of non-metallic inclusions on fatigue properties of calcium treated steels, Helsinki University of Technology, Espoo, 2004.Google Scholar
  7. 7.
    7. D. Krewerth, T. Lippmann, A. Weidner, and H. Biermann: Int. J. Fatigue, 2016, vol. 84, pp. 40–52.CrossRefGoogle Scholar
  8. 8.
    S. Ogibayashi: Advances in technology of oxide metallurgy. Nippon Steel Technical Report No. 61, 1994.Google Scholar
  9. 9.
    9. K.-i. Uemura, M. Takahashi, S. Koyama, and M. Nitta: ISIJ Int., 1992, vol. 32, pp. 150–56.CrossRefGoogle Scholar
  10. 10.
    10. S. Ali, R. Mutharasan, and D. Apelian: Metall. Trans. B, 1985, vol. 16, pp. 725–42.CrossRefGoogle Scholar
  11. 11.
    11. H. Fredriksson and U. Akerlind: Materials processing during casting, Wiley, Chichester, 2006.CrossRefGoogle Scholar
  12. 12.
    12. J. Campbell: Complete casting handbook: Metal casting processes, metallurgy, techniques and design, Elsevier : Butterworth-Heinemann, Amsterdam, 2015.Google Scholar
  13. 13.
    13. K. Raiber, P. Hammerschmid, and D. Janke: ISIJ Int., 1995, vol. 35, pp. 380–88.CrossRefGoogle Scholar
  14. 14.
    14. C. Chen, H. Xue, H. Peng, L. Yan, L. Zhi, and S. Wang: J. Nanomater., 2014, vol. 2014, pp. 1–7.Google Scholar
  15. 15.
    15. M. Kiviö and L. Holappa: Metall. Mater. Trans. B, 2012, vol. 43, pp. 233–40.CrossRefGoogle Scholar
  16. 16.
    H.-J. Spies: Doctoral Thesis, Freiberg, Germany, 1968.Google Scholar
  17. 17.
    17. D. Kim, K. Han, B. Lee, I. Han, J. H. Park, and C. Lee: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2046–54.CrossRefGoogle Scholar
  18. 18.
    18. S. S. Babu and S. A. David: ISIJ Int., 2002, vol. 42, pp. 1344–53.CrossRefGoogle Scholar
  19. 19.
    19. S. K. Choudhary and A. Ghosh: ISIJ Int., 2009, vol. 49, pp. 1819–27.CrossRefGoogle Scholar
  20. 20.
    20. M. Wintz, M. Bobadilla, J. Lehmann, and H. Gaye: ISIJ Int., 1995, vol. 35, pp. 715–22.CrossRefGoogle Scholar
  21. 21.
    21. D.-H. Woo, Y.-B. Kang, H. Gaye, and H.-G. Lee: ISIJ Int., 2009, vol. 49, pp. 1490–97.CrossRefGoogle Scholar
  22. 22.
    22. D. S. Sarma, A. V. Karasev, and P. G. Jönsson: ISIJ Int., 2009, vol. 49, pp. 1063–74.CrossRefGoogle Scholar
  23. 23.
    23. M. Wakoh, T. Sawai, and S. Mizoguchi: ISIJ Int., 1996, vol. 36, pp. 1014–21.CrossRefGoogle Scholar
  24. 24.
    American Institute of Mining and Metallurgical Engineers. Iron and Steel Division. Committee on Physical Chemistry of Steelmaking: Basic open hearth steelmaking, Edwards Brothers, Ann Arbor, 1964.Google Scholar
  25. 25.
    25. R. Dekkers, B. Blanpain, P. Wollants, F. Haers, C. Vercruyssen, and B. Gommers: Ironmak. Steelmak., 2002, vol. 29, pp. 437–44.CrossRefGoogle Scholar
  26. 26.
    S. Ovtchinnikov: Doctoral Thesis, Freiberg, Germany, 2009.Google Scholar
  27. 27.
    D. H. Herring: Ind. Heat. 2009, vol. 10, pp. 18–20.Google Scholar
  28. 28.
    28. H.-S. Kim, H.-G. Lee, and K.-S. Oh: ISIJ Int., 2002, vol. 42, pp. 1404–11.CrossRefGoogle Scholar
  29. 29.
    29. K. Oikawa, S.-I. Sumi, and K. Ishida: J. Phase Equilib., 1999, vol. 20, pp. 215–23.CrossRefGoogle Scholar
  30. 30.
    30. Z. Ma and D. Janke: ISIJ Int., 1998, vol. 38, pp. 46–52.CrossRefGoogle Scholar
  31. 31.
    M.-A. van Ende: Doctoral Thesis, Leuven, 2010.Google Scholar
  32. 32.
    32. Z. Liu, K. Gu, and K. Cai: ISIJ Int., 2002, vol. 42, pp. 950–57.CrossRefGoogle Scholar
  33. 33.
    33. G. F. Voort, ed.: Applied Metallography, Springer US, Boston, MA, 1986.Google Scholar
  34. 34.
    N. R. Comins and J. B. Clark: Specialty Steels and Hard Materials: Proceedings of the International Conference on Recent Developments in Specialty Steels and Hard Materials (Materials Development ‘82) Held in Pretoria, South Africa, 8-12 November 1982, Elsevier Science, Burlington, 2013.Google Scholar
  35. 35.
    35. H. Goto, K.-i. Miyazawa, and K. Tanaka: ISIJ Int., 1995, vol. 35, pp. 286–91.CrossRefGoogle Scholar
  36. 36.
    36. T. J. Baker: Metallogr. Microstruct. Anal., 1975, vol. 5, pp. 69–79.CrossRefGoogle Scholar
  37. 37.
    37. K. Oikawa, K. Ishida, and T. Nishizawa: ISIJ Int., 1997, vol. 37, pp. 332–38.CrossRefGoogle Scholar
  38. 38.
    A. Pokorny and J. Pokorny, eds.: De Ferri Metallographia: III Solidification and Deformation of Steels, Berger-Levrault, 1967.Google Scholar
  39. 39.
    39. K. Wasai, K. Mukai, and A. Miyanaga: ISIJ Int., 2002, vol. 42, pp. 459–66.CrossRefGoogle Scholar
  40. 40.
    40. K. Oikawa, H. Ohtani, K. Ishida, and T. Nishizawa: ISIJ Int., 1995, vol. 35, pp. 402–08.CrossRefGoogle Scholar
  41. 41.
    41. M. Faraji, D. P. Wilcox, R. Thackray, A. A. Howe, I. Todd, and P. Tsakiropoulos: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2490–502.CrossRefGoogle Scholar
  42. 42.
    42. H. Goto, K.-i. Miyazawa, K.-i. Yamaguchi, S. Ogibayashi, and K. Tanaka: ISIJ Int., 1994, vol. 34, pp. 414–19.CrossRefGoogle Scholar
  43. 43.
    H. Du: The evaluation of non-metallic inclusions in calcium-treated steel by using electrolytic extraction, Stockholm, 2016.Google Scholar
  44. 44.
    44. S.-J. Luo, Y.-H. F. Su, M.-J. Lu, and J.-C. Kuo: Mater. Charact., 2013, vol. 82, pp. 103–12.CrossRefGoogle Scholar
  45. 45.
    45. S. Kimura, K. Nakajima, S. Mizoguchi, and H. Hasegawa: Metall. Mater. Trans. A, 2002, vol. 33, pp. 427–36.CrossRefGoogle Scholar
  46. 46.
    46. H. S. Kim, H.-G. Lee, and K.-S. Oh: Metall. Mat. Trans. A, 2001, vol. 32, pp. 1519–25.CrossRefGoogle Scholar
  47. 47.
    47. G. Jing, C. Shu-Sen, and C. Zi-Jian: ISIJ Int., 2013, vol. 53, pp. 2142–51.CrossRefGoogle Scholar
  48. 48.
    48. S. K. Choudhary and A. Ghosh: ISIJ Int., 2008, vol. 48, pp. 1552–59.CrossRefGoogle Scholar
  49. 49.
    R. Diederichs and W. Bleck: Steel Res. Int., 2006, vol. 77, pp. 202–09.CrossRefGoogle Scholar
  50. 50.
    50. R. Diederichs, R. Bülte, G. Pariser, and W. Bleck: steel res. int., 2006, vol. 77, pp. 256–64.CrossRefGoogle Scholar
  51. 51.
    51. S. Gerasin and D. Kalisz: Arch. Foundry Eng., 2015, vol. 15, pp. 35–38.Google Scholar
  52. 52.
    52. M. Javurek, P. Gittler, R. Rössler, B. Kaufmann, and H. Preßlinger: steel res. int., 2005, vol. 76, pp. 64–70.CrossRefGoogle Scholar
  53. 53.
    53. J. Lehmann, P. Rocabois, and H. Gaye: J. Non-Cryst. Solids, 2001, vol. 282, pp. 61–71.CrossRefGoogle Scholar
  54. 54.
    54. M. Lückl, S. Zamberger, and E. Kozeschnik: steel res. int., 2016, vol. 87, pp. 271–75.CrossRefGoogle Scholar
  55. 55.
    55. Z. Liu, J. Wei, and K. Cai: ISIJ Int., 2002, vol. 42, pp. 958–63.CrossRefGoogle Scholar
  56. 56.
    56. T. S. Zhang, Y. Min, and M. F. Jiang: Can. Metall. Q., 2014, vol. 54, pp. 161–69.CrossRefGoogle Scholar
  57. 57.
    57. I.-H. Jung, S. A. Decterov, and A. D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35, pp. 877–89.CrossRefGoogle Scholar
  58. 58.
    58. Y. Bi, A. Karasev, and P. G. Jönsson: Ironmak. Steelmak., 2014, vol. 41, pp. 756–62.CrossRefGoogle Scholar
  59. 59.
    Y. Bi: Doctoral Thesis, Industrial Engineering and management, Stockholm, 2014.Google Scholar
  60. 60.
    60. W. Yang, H. Duan, L. Zhang, and Y. Ren: JOM-J. Min. Met. Mat. S., 2013, vol. 65, pp. 1173–80.CrossRefGoogle Scholar
  61. 61.
    61. Y. Liu, L. Zhang, H. Duan, Y. Zhang, Y. Luo, and A. N. Conejo: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3015–25.CrossRefGoogle Scholar
  62. 62.
    R. Inoue, M. Hayasaka, and T. Nishi, eds.: Formation of fine complex inclusion particles in steel, 2015.Google Scholar
  63. 63.
    63. R. Inoue, S. Ueda, T. Ariyama, and H. Suito: ISIJ Int., 2011, vol. 51, pp. 2050–55.CrossRefGoogle Scholar
  64. 64.
    64. A. Weidner, D. Krewerth, B. Witschel, M. Emmel, A. Schmidt, J. Gleinig, O. Volkova, C. G. Aneziris, and H. Biermann: steel res. int., 2016, vol. 87, pp. 1038–53.CrossRefGoogle Scholar
  65. 65.
    65. D. Janis, R. Inoue, A. Karasev, and P. G. Jönsson: Adv. Mater. Sci. Eng., 2014, vol. 2014, pp. 1–7.CrossRefGoogle Scholar
  66. 66.
    66. L. K. Bigelow and M. C. Flemings: Metall. Trans. B, 1975, vol. 6, pp. 275–83.CrossRefGoogle Scholar
  67. 67.
    67. D. Krewerth, T. Lippmann, A. Weidner, and H. Biermann: Int. J. Fatigue, 2015, vol. 80, pp. 459–67.CrossRefGoogle Scholar
  68. 68.
    68. S. Henschel, S. Dudczig, L. Krüger, and C. G. Aneziris: Procedia Structural Integrity, 2016, vol. 2, pp. 358–65.CrossRefGoogle Scholar
  69. 69.
    E. Storti, S. Dudczig, A. Schmidt, G. Schmidt, and C.G. Aneziris: Steel Res. Int., 2017, vol. 88, art. no. 1700142.
  70. 70.
    70. S. Henschel, D. Krewerth, F. Ballani, A. Weidner, L. Krüger, H. Biermann, M. Emmel, and C. G. Aneziris: Adv. Eng. Mater., 2013, vol. 15, pp. 1216–23.CrossRefGoogle Scholar
  71. 71.
    71. M. Emmel and C. G. Aneziris: J. Mater. Res., 2013, vol. 28, pp. 2234–42.CrossRefGoogle Scholar
  72. 72.
    72. S. Dudczig, D. Veres, C. G. Aneziris, E. Skiera, and R. W. Steinbrech: Ceramics International, 2012, vol. 38, pp. 2011–19.CrossRefGoogle Scholar
  73. 73.
    73. C. G. Aneziris, A. Ansorge, and H. Jaunich: Cer. Forum Intern., 2008, vol. 83, E100-E103.Google Scholar
  74. 74.
    S. Henschel, J. Gleinig, T. Lippmann, A. Weidner, S. Dudczig, C. G. Aneziris, H. Biermann, and L. Krüger: Adv. Eng. Mater., 2017.Google Scholar
  75. 75.
    75. J. Fruhstorfer, S. Dudczig, M. Rudolph, G. Schmidt, N. Brachhold, L. Schöttler, D. Rafaja, and C. G. Aneziris: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1499–521. Scholar
  76. 76.
    76. J. Fruhstorfer, L. Schöttler, S. Dudczig, G. Schmidt, P. Gehre, and C. G. Aneziris: J. Am. Ceram. Soc., 2016, vol. 36, pp. 1299–306.CrossRefGoogle Scholar
  77. 77.
    77. C. G. Aneziris, S. Dudczig, J. Hubálková, M. Emmel, and G. Schmidt: Ceram. Int., 2013, vol. 39, pp. 2835–43.CrossRefGoogle Scholar
  78. 78.
    78. J. Fruhstorfer, S. Dudczig, P. Gehre, G. Schmidt, N. Brachhold, L. Schöttler, and C. G. Aneziris: steel res. int., 2016, vol. 87, pp. 1014–23.CrossRefGoogle Scholar
  79. 79.
    79. S. Dudczig, C. G. Aneziris, M. Emmel, G. Schmidt, J. Hubalkova, and H. Berek: Ceramics International, 2014, vol. 40, pp. 16727–42.CrossRefGoogle Scholar
  80. 80.
    A. Schmidt, A. Salomon, S. Dudczig, H. Berek, D. Rafaja, and C.G. Aneziris: Adv. Eng. Mater., 2017, vol. 19, art. no. 1700170.
  81. 81.
    81. E. Storti, S. Dudczig, G. Schmidt, P. Colombo, and C. G. Aneziris: Journal of the European Ceramic Society, 2016, vol. 36, pp. 857–66.CrossRefGoogle Scholar
  82. 82.
    82. A. Asad, K. Bauer, K. Chattopadhyay, and R. Schwarze: Metall and Materi Trans B, 2018, vol. 49, pp. 1378–87.CrossRefGoogle Scholar
  83. 83.
    F. Mehmed and H. Haraldsen: Z. Anorg. Allg. Chem, 1938, 235:193–200.CrossRefGoogle Scholar
  84. 84.
    84. H. Ott: Z. Kristallogr., 1926, vol. 63, pp. 222–30.Google Scholar
  85. 85.
    85. K. Kanaya and S. Okayama: J. Phys. D: Appl. Phys., 1972, vol. 5, pp. 43–58.CrossRefGoogle Scholar
  86. 86.
    86. D. Benoit, J. F. Bresse, L. V. Dack, H. Werner, and J. Wernisch: Microbeam and Nanobeam Analysis, Springer, Wien, 1996.CrossRefGoogle Scholar
  87. 87.
    R. Sadanaga, M. Tokonami, and Y. Takeuchi: Acta Crystallogr., 1962, 15:65–68.CrossRefGoogle Scholar
  88. 88.
    88. M. Durand-Charre: Microstructure of Steels and Cast Irons, Springer, Berlin, 2004.CrossRefGoogle Scholar
  89. 89.
    89. N. Ånmark, A. Karasev, and P. G. Jönsson: Materials, 2015, vol. 8, pp. 751–83.CrossRefGoogle Scholar
  90. 90.
    90. Y. Ueshima, Y. Sawada, S. Mizoguchi, and H. Kajioka: Metall. Trans. A, 1989, vol. 20, pp. 1375–83.CrossRefGoogle Scholar
  91. 91.
    P. Chen: Material Science and Engineering: Proceedings of the 3rd Annual 2015 International Conference on Material Science and Engineering (ICMSE2015, Guangzhou, Guangdong, China, 15-17 May 2015), CRC Press, 2016.Google Scholar
  92. 92.
    92. O. Martiník, B. Smetana, J. Dobrovská, A. Kalup, S. Zlá, M. Kawuloková, K. Gryc, P. Dostál, Ľ. Drozdová, and B. Baudisová: J. Min. Metall. B, 2017, vol. 53, pp. 391–98.CrossRefGoogle Scholar
  93. 93.
    93. Y. He, Z. Li, H. Qi, and W. Gao: Mater. Res. Innov., 1997, vol. 1, pp. 157–60.CrossRefGoogle Scholar
  94. 94.
    94. S. Luo, B. Wang, Z. Wang, D. Jiang, W. Wang, and M. Zhu: ISIJ Int., 2017, vol. 57, pp. 2000–09.CrossRefGoogle Scholar
  95. 95.
    C. Orrling, Y. Fang, N. Phinichka, S. Sridhar, and A. W. Cramb: JOM-e, 1999, vol. 51 (
  96. 96.
    96. D. R. Uhlmann, B. Chalmers, and K. A. Jackson: J. Appl. Phys., 1964, vol. 35, pp. 2986–93.CrossRefGoogle Scholar
  97. 97.
    97. C. G. Aneziris, C. Schroeder, M. Emmel, G. Schmidt, H. P. Heller, and H. Berek: Metall. Mater. Trans. B, 2013, vol. 44, pp. 954–68.CrossRefGoogle Scholar
  98. 98.
    98. C. G. Aneziris, C. Schroeder, U. Fischer, H. Berek, M. Emmel, J. Kortus, L. G. Amirkhanyan, and T. Weißbach: Adv. Eng. Mater., 2013, vol. 15, pp. 1168–76.CrossRefGoogle Scholar
  99. 99.
    C. Schröder, U. Fischer, A. Schmidt, G. Schmidt, O. Volkova, and C.G. Aneziris: Adv. Eng. Mater., 2017, vol. 19, art. no. 1700146.
  100. 100.
    100. Y. Tanaka, F. Pahlevani, and V. Sahajwalla: Metals, 2018, vol. 8, p. 176.CrossRefGoogle Scholar
  101. 101.
    101. H. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 936–45.CrossRefGoogle Scholar
  102. 102.
    H. Liu and W. Chen: Steel Res. Int., 2012, vol. 83, pp. 1172–79.CrossRefGoogle Scholar
  103. 103.
    D.-H. Woo and H.-G. Lee: J. Am. Ceram. Soc., 2010, p. 615.Google Scholar
  104. 104.
    F. Oeters, ed.: Metallurgy of steelmaking, Stahleisen, Düsseldorf, 1994.Google Scholar
  105. 105.
    105. S. Seetharaman, A. McLean, R. Guthrie, and S. Sridhar: Industrial processess, Elsevier, Amsterdam, 2014.Google Scholar
  106. 106.
    106. Z. Z. Liu, M. Kuwabara, B. H. Li, Y. Kobayashi, and K. Nagai: steel res. int., 2011, vol. 82, pp. 557–65.CrossRefGoogle Scholar
  107. 107.
    107. G. Krauss: Steels: Processing, structure, and performance, ASM International, Materials Park, Ohio, 2010.Google Scholar
  108. 108.
    108. Y. Jo, H.-G. Lee, and Y.-B. Kang: ISIJ Int., 2013, vol. 53, pp. 751–60.CrossRefGoogle Scholar
  109. 109.
    M. McGuire: Stainless Steels for Design Engineers, 2008.Google Scholar
  110. 110.
    110. L. E. Iorio and W. M. Garrison Jr.: Scripta Mater., 2002, vol. 46, pp. 863–68.CrossRefGoogle Scholar
  111. 111.
    X. Deng, M. Jiang, and X. Wang: Acta Metall. Sin., 2012, vol. 25, pp. 241–48.Google Scholar
  112. 112.
    112. I.-H. Jung, S. A. Decterov, and A. D. Pelton: ISIJ Int., 2004, vol. 44, pp. 527–36.CrossRefGoogle Scholar
  113. 113.
    113. K. Wasai and K. Mukai: ISIJ Int., 2003, vol. 43, pp. 606–11.CrossRefGoogle Scholar
  114. 114.
    114. K. Wang and M. D. Sacks: J. Am. Ceram. Soc., 1996, vol. 79, pp. 12–16.CrossRefGoogle Scholar
  115. 115.
    E. Storti, S. Dudczig, J. Hubálková, J. Gleinig, A. Weidner, H. Biermann, and C.G. Aneziris: Adv. Eng. Mater., 2017, vol. 19, art. no. 1700153.
  116. 116.
    116. T. Zienert, S. Dudczig, O. Fabrichnaya, and C. G. Aneziris: Ceramics International, 2015, vol. 41, pp. 2089–98.CrossRefGoogle Scholar
  117. 117.
    T. Zienert: A kinetic model to estimate the rate of Al2O3-layer formation on carbon-bonded oxides in contact with steel melt, CALPHAD XLVII Conference, Querétaro, México, 05.30.2018 (

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Johannes Gleinig
    • 1
    Email author
  • Anja Weidner
    • 1
  • Jens Fruhstorfer
    • 2
  • Christos G. Aneziris
    • 2
  • Olena Volkova
    • 3
  • Horst Biermann
    • 1
  1. 1.Institute of Materials EngineeringTechnische Universität Bergakademie FreibergFreibergGermany
  2. 2.Institute of Ceramic, Glass and Construction MaterialsTechnische Universität Bergakademie FreibergFreibergGermany
  3. 3.Institute of Iron and Steel TechnologyTechnische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations