Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 42–51 | Cite as

Feasibility Study of Continuous Casting of Steel Billets in Twin-Belt Caster

  • Pavan Kumar Penumakala
  • Ashok Kumar NallathambiEmail author
  • Eckehard Specht
  • Ulrich Urlau
  • Doug Hamilton
  • Charlie Dykes


Integrated casting and rolling in a series production line is well established for the non-ferrous metals through the use of twin-belt casting technology. However, this twin-belt casting with high mass flow is not yet commercialized in the continuous production of steel alloys. A novel steel casting for the in-line rolling (named LUUP method) is presented and one main focus of this work is to design a casting machine: twin-belt caster. Influence of mass flow rate and dimensional ratio on the solidification, compensation, and total process length is addressed. A gap-dependent belt and dam block side heat transfer is modeled. The admissible casting speed due to the limitations of caster length and shell strength is addressed. The total process length only depends on the mass flow rate. A 2D traveling slice numerical model is presented with realistic boundary conditions for the entire process starting from the meniscus to roll mill entry.



Temperature (\(^{\circ }{\rm C}\))

\(\lambda \)

Thermal conductivity (W/mK)


Specific heat (J/kg K)

\(\rho \)

Density (\({\rm kg}/{\rm m}^3\))


Thermal diffusivity (\({\rm m}^2/{\rm s}\))

\(\Delta h\)

Latent heat (kJ/kg)

\(\delta \)

Thickness (m)


Heat transfer coefficient (\({\rm W}/{\rm m}^2{\rm K}\))


Mass flow rate (kg/s)

\(\theta =\frac{T-T_{\rm su}}{T_{\rm in}-T_{\rm su}}\)

Dimensionless temperature

\(\Delta =\frac{\delta }{s/2}\)

Dimensionless solid thickness


Billet width (m)


Billet thickness (m)

\(V_{\rm c}\)

Casting speed (m/min)

\({\rm Ste}=\frac{c(T_{\rm in}-T_{\rm su})}{\Delta h}\)

Stefan number


Fourier number


Dimensionless coordinate





Interface between belt and shell






Belt side contact with liquid metal


Belt side contact with water


Dam block side shell


Dam block

\({\infty }\)












The financial support provided by the German Science Foundation (DFG) through graduate school GRK 1554 is sincerely acknowledged.


  1. 1.
    R. Zhao, J.X. Fu, Y.X. Wu, Y.J. Yang, Y.Y. Zhu, and M. Zhang: ISIJ Int., 2015, vol. 55, pp. 1816–1821.CrossRefGoogle Scholar
  2. 2.
    N. Zapuskalov: ISIJ Int., 2003, vol. 43, pp. 1115–1127.CrossRefGoogle Scholar
  3. 3.
    S.M. Yun, S. Lokyer, and J.D. Hunt: Mater. Sci. Eng. A, 2000, vol. 280, pp. 116–123.CrossRefGoogle Scholar
  4. 4.
    J. Zeng, R. Koitzsch, H. Pfeifer, and B. Friedrich: J. Mater. Process. Technol., 2009, vol. 209, pp. 2321–2328.CrossRefGoogle Scholar
  5. 5.
    R.I.L. Guthrie, M. Isac, and D. Li: ISIJ Int., 2010, vol. 50, pp. 1805–1813.CrossRefGoogle Scholar
  6. 6.
    R.I.L. Guthrie and M. Isac: Steel Res. Int., 2014, vol. 85, pp. 1291–1302.CrossRefGoogle Scholar
  7. 7.
    S.X. Zhang, H.M. Myo, K.B. Lim, K.K. Tong, M.S. Yong, S.F. Pook, and M.W. Fu: J. Mater. Process. Technol., 2007, vol. 192, pp. 101–107.CrossRefGoogle Scholar
  8. 8.
    S. Ge, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2012, vol. 52, pp. 2109–2122.CrossRefGoogle Scholar
  9. 9.
    S. Ge, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2013, vol. 53, pp. 729–742.CrossRefGoogle Scholar
  10. 10.
    Y.A. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685–705.CrossRefGoogle Scholar
  11. 11.
    H. Wang, G. Li, Y. Lei, Y. Zhao, Q. Dai, and J. Wang: ISIJ Int., 2005, vol. 45, pp. 1291–1296.CrossRefGoogle Scholar
  12. 12.
    B. Lu, D. Chen, G. Chen, and W. Yu: Appl. Therm. Eng., 2017, vol. 112, pp. 174–183.CrossRefGoogle Scholar
  13. 13.
    P.K. Penumakala, A.K. Nallathambi, E. Specht, U. Urlau, and P. Unifantowicz: Appl. Therm. Eng., 2015, vol. 84, pp. 286–291.CrossRefGoogle Scholar
  14. 14.
    E. Specht and R. Alt: Steel Res. Int., 1990, vol. 61, pp. 569–575.CrossRefGoogle Scholar
  15. 15.
    E. Specht: Heat and Mass Transfer in Thermoprocessing, Vulkan Verlag, Essen, 2017.Google Scholar
  16. 16.
    P.K. Penumakala, A.K. Nallathambi, E. Specht, U. Urlau, D. Hamilton, and C. Dykes: Appl. Therm. Eng., 2018, vol. 134, pp. 275–286.CrossRefGoogle Scholar
  17. 17.
    A.K. Nallthambi: PhD thesis, Otto von Guericke University, Magdeburg, Germany, 2010.Google Scholar
  18. 18.
    M. Cervera, C.A.D. Saracibar, and M. Chiumenti: Int. J. Numer. Methods Eng., 1991, vol. 46, pp. 1575–1591.CrossRefGoogle Scholar
  19. 19.
    H.M. Sahin, K. Kocatepe, R. Kayikci, and N. Akar: Energy Convers. Manag., 2006, vol. 47, pp. 19–34.CrossRefGoogle Scholar
  20. 20.
    P.K. Penumakala, A.K. Nallathambi, and E. Specht: Materials Science and Technology Conference and Exhibition, 2012, pp. 52–60.Google Scholar
  21. 21.
    C. Li and B.G. Thomas: 85th Steelmaking Conference Proceedings, 2002, pp. 109–30.Google Scholar
  22. 22.
    D. Celentano, E. Orate, and S. Oller: Int. J. Numer. Methods Eng., 1994, vol. 37, pp. 3441–3465.CrossRefGoogle Scholar
  23. 23.
    A.K. Nallathambi, E. Specht, and A. Bertram: Comput. Mater. Sci., 2009, vol. 47, pp. 332–341.CrossRefGoogle Scholar
  24. 24.
    P.K. Penumakala: PhD thesis, Otto von Guericke University, Magdeburg, Germany, 2014.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Pavan Kumar Penumakala
    • 1
  • Ashok Kumar Nallathambi
    • 2
    Email author
  • Eckehard Specht
    • 3
  • Ulrich Urlau
    • 4
  • Doug Hamilton
    • 5
  • Charlie Dykes
    • 5
  1. 1.Birla Institute of Technology and Science - Pilani, Hyderabad CampusHyderabadIndia
  2. 2.Department of Mechanical EngineeringNational Institute of TechnologyTiruchirappalliIndia
  3. 3.Otto von Guericke University MagdeburgMagdeburgGermany
  4. 4.Urlau Innomanagement GmbHKriensSwitzerland
  5. 5.Hazelett CorporationColchesterUSA

Personalised recommendations